Journal of Applied Mathematics

Optimal Two Parameter Bounds for the Seiffert Mean

Hui Sun, Ying-Qing Song, and Yu-Ming Chu

Full-text: Open access

Abstract

We obtain sharp bounds for the Seiffert mean in terms of a two parameter family of means. Our results generalize and extend the recent bounds presented in the Journal of Inequalities and Applications (2012) and Abstract and Applied Analysis (2012).

Article information

Source
J. Appl. Math., Volume 2013 (2013), Article ID 438971, 3 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394808081

Digital Object Identifier
doi:10.1155/2013/438971

Mathematical Reviews number (MathSciNet)
MR3090610

Zentralblatt MATH identifier
06950679

Citation

Sun, Hui; Song, Ying-Qing; Chu, Yu-Ming. Optimal Two Parameter Bounds for the Seiffert Mean. J. Appl. Math. 2013 (2013), Article ID 438971, 3 pages. doi:10.1155/2013/438971. https://projecteuclid.org/euclid.jam/1394808081


Export citation

References

  • H. J. Seiffert, “Aufgabe $\beta $16,” Die Wurzel, vol. 29, pp. 221–222, 1995.
  • P. A. Hästö, “A monotonicity property of ratios of symmetric homogeneous means,” Journal of Inequalities in Pure and Applied Mathematics, vol. 3, no. 5, article 71, 23 pages, 2002.
  • E. Neuman and J. Sándor, “On the Schwab-Borchardt mean,” Mathematica Pannonica, vol. 14, no. 2, pp. 253–266, 2003.
  • E. Neuman and J. Sándor, “On the Schwab-Borchardt mean–-II,” Mathematica Pannonica, vol. 17, no. 1, pp. 49–59, 2006.
  • H. Liu and X.-M. Ju, “The optimal convex combination bounds for Seiffert's mean,” Journal of Inequalities and Applications, vol. 2011, Article ID 686834, 9 pages, 2011.
  • W.-D. Jiang, “Some sharp inequalities involving reciprocals of the Seiffert and other means,” Journal of Mathematical Inequalities, vol. 6, no. 4, pp. 593–599, 2012.
  • W.-D. Jiang and F. Qi, “Some sharp inequalities involving Seiffert and other means and their concise proofs,” Mathematical Inequalities & Applications, vol. 15, no. 4, pp. 1007–1017, 2012.
  • J. Sandor, “Trigonometric and hyperbolic inequalities,” submitted, http://arxiv.org/abs/1105.0859.
  • Y.-M. Chu, S.-W. Hou, and Z.-H. Shen, “Sharp bounds for Seiffert mean in terms of root mean square,” Journal of Inequalities and Applications, vol. 2012, article 11, 2012.
  • Y.-M. Chu and S.-W. Hou, “Sharp bounds for Seiffert mean in terms of contraharmonic mean,” Abstract and Applied Analysis, vol. 2012, Article ID 425175, 6 pages, 2012.
  • G. D. Anderson, M. K. Vamanamurthy, and M. K. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York, NY, USA, 1997.