Journal of Applied Mathematics

A Numerical Method for Delayed Fractional-Order Differential Equations

Zhen Wang

Full-text: Open access

Abstract

A numerical method for nonlinear fractional-order differential equations with constant or time-varying delay is devised. The order here is an arbitrary positive real number, and the differential operator is with the Caputo definition. The general Adams-Bashforth-Moulton method combined with the linear interpolation method is employed to approximate the delayed fractional-order differential equations. Meanwhile, the detailed error analysis for this algorithm is given. In order to compare with the exact analytical solution, a numerical example is provided to illustrate the effectiveness of the proposed method.

Article information

Source
J. Appl. Math., Volume 2013 (2013), Article ID 256071, 7 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394807984

Digital Object Identifier
doi:10.1155/2013/256071

Mathematical Reviews number (MathSciNet)
MR3056227

Zentralblatt MATH identifier
1266.65118

Citation

Wang, Zhen. A Numerical Method for Delayed Fractional-Order Differential Equations. J. Appl. Math. 2013 (2013), Article ID 256071, 7 pages. doi:10.1155/2013/256071. https://projecteuclid.org/euclid.jam/1394807984


Export citation

References

  • K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
  • I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
  • P. L. Butzer and U. Westphal, “An introduction to fractional calculus,” in Applications of Fractional Calculus in Physics, pp. 1–85, World Scientific Publishing, River Edge, NJ, USA, 2000.
  • Z. Wang, X. Huang, Y.-X. Li, and X.-N. Song, “A new image encryption algorithm based on fractional-order hyperchaotic Lorenz system,” Chinese Physics B, vol. 22, Article ID 010504, 2013.
  • K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, vol. 111 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1974.
  • R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA, 2000.
  • P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivatives in the behaviour of real materials,” Journal of Applied Mechanics, vol. 51, no. 2, pp. 294–298, 1984.
  • F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solitons & Fractals, vol. 7, no. 9, pp. 1461–1477, 1996.
  • N. J. Ford and A. C. Simpson, “The numerical solution of fractional differential equations: speed versus accuracy,” Numerical Algorithms, vol. 26, no. 4, pp. 333–346, 2001.
  • V. Daftardar-Gejji and A. Babakhani, “Analysis of a system of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 511–522, 2004.
  • K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002.
  • K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002.
  • K. Diethelm, N. J. Ford, and A. D. Freed, “Detailed error analysis for a fractional Adams method,” Numerical Algorithms, vol. 36, no. 1, pp. 31–52, 2004.
  • K. Diethelm, N. J. Ford, A. D. Freed, and Yu. Luchko, “Algorithms for the fractional calculus: a selection of numerical methods,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 6-8, pp. 743–773, 2005.
  • K. Diethelm and N. J. Ford, “Multi-order fractional differential equations and their numerical solution,” Applied Mathematics and Computation, vol. 154, no. 3, pp. 621–640, 2004.
  • Z. Odibat, “Approximations of fractional integrals and Caputo fractional derivatives,” Applied Mathematics and Computation, vol. 178, no. 2, pp. 527–533, 2006.
  • J. T. Edwards, N. J. Ford, and A. C. Simpson, “The numerical solution of linear multi-term fractional differential equations; systems of equations,” Journal of Computational and Applied Mathematics, vol. 148, no. 2, pp. 401–418, 2002.
  • K. Diethelm, “An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives,” Numerical Algorithms, vol. 47, no. 4, pp. 361–390, 2008.
  • K. Diethelm, “An improvement of a nonclassical numerical method for the computation of fractional derivatives,” Journal of Vibration and Acoustics, vol. 131, no. 1, Article ID 014502, 4 pages, 2009.
  • C. Li and C. Tao, “On the fractional Adams method,” Computers & Mathematics with Applications, vol. 58, no. 8, pp. 1573–1588, 2009.
  • R. Garrappa, “On some explicit Adams multistep methods for fractional differential equations,” Journal of Computational and Applied Mathematics, vol. 229, no. 2, pp. 392–399, 2009.
  • L. Galeone and R. Garrappa, “Fractional Adams-Moulton methods,” Mathematics and Computers in Simulation, vol. 79, no. 4, pp. 1358–1367, 2008.
  • L. Galeone and R. Garrappa, “Explicit methods for fractional differential equations and their stability properties,” Journal of Computational and Applied Mathematics, vol. 228, no. 2, pp. 548–560, 2009.
  • W. Deng, “Short memory principle and a predictor-corrector approach for fractional differential equations,” Journal of Computational and Applied Mathematics, vol. 206, no. 1, pp. 174–188, 2007.
  • C. Li and G. Peng, “Chaos in Chen's system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443–450, 2004.
  • X. Wu, J. Li, and G. Chen, “Chaos in the fractional order unified system and its synchronization,” Journal of the Franklin Institute, vol. 345, no. 4, pp. 392–401, 2008.
  • M. S. Tavazoei and M. Haeri, “Chaotic attractors in incommensurate fractional order systems,” Physica D, vol. 237, no. 20, pp. 2628–2637, 2008.
  • S. Dadras and H. R. Momeni, “Control of a fractional-order economical system via sliding mode,” Physica A, vol. 389, no. 12, pp. 2434–2442, 2010.
  • Y. Chen and K. L. Moore, “Analytical stability bound for a class of delayed fractional-order dynamic systems,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 191–200, 2002.
  • P. Lanusse, H. Benlaoukli, D. Nelson-Gruel, and A. Oustaloup, “Fractional-order control and interval analysis of SISO systems with time-delayed state,” IET Control Theory & Applications, vol. 2, no. 1, pp. 16–23, 2008.
  • X. Zhang, “Some results of linear fractional order time-delay system,” Applied Mathematics and Computation, vol. 197, no. 1, pp. 407–411, 2008.