Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2013, Special Issue (2013), Article ID 732178, 14 pages.

A Novel Adaptive Probabilistic Nonlinear Denoising Approach for Enhancing PET Data Sinogram

Musa Alrefaya and Hichem Sahli

Full-text: Open access


We propose filtering the PET sinograms with a constraint curvature motion diffusion. The edge-stopping function is computed in terms of edge probability under the assumption of contamination by Poisson noise. We show that the Chi-square is the appropriate prior for finding the edge probability in the sinogram noise-free gradient. Since the sinogram noise is uncorrelated and follows a Poisson distribution, we then propose an adaptive probabilistic diffusivity function where the edge probability is computed at each pixel. The filter is applied on the 2D sinogram prereconstruction. The PET images are reconstructed using the Ordered Subset Expectation Maximization (OSEM). We demonstrate through simulations with images contaminated by Poisson noise that the performance of the proposed method substantially surpasses that of recently published methods, both visually and in terms of statistical measures.

Article information

J. Appl. Math., Volume 2013, Special Issue (2013), Article ID 732178, 14 pages.

First available in Project Euclid: 14 March 2014

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier


Alrefaya, Musa; Sahli, Hichem. A Novel Adaptive Probabilistic Nonlinear Denoising Approach for Enhancing PET Data Sinogram. J. Appl. Math. 2013, Special Issue (2013), Article ID 732178, 14 pages. doi:10.1155/2013/732178.

Export citation


  • P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.
  • D. Kazantsev, S. R. Arridge, S. Pedemonte et al., “An anatomically driven anisotropic diffusion filtering method for 3D SPECT reconstruction,” Physics in Medicine and Biology, vol. 57, no. 12, pp. 3793–3810, 2012.
  • Z. Quan and L. Yi, “Image reconstruction algorithm for positron emission tomography with Thin Plate prior combined with an anisotropic diffusion filter,” Journal of Clinical Rehabilitative Tissue Engineering Research, vol. 15, no. 52, 2011.
  • O. Demirkaya, “Post-reconstruction filtering of positron emission tomography whole-body emission images and attenuation maps using nonlinear diffusion filtering,” Academic Radiology, vol. 11, no. 10, pp. 1105–1114, 2004.
  • D. R. Padfield and R. Manjeshwar, “Adaptive conductance filtering for spatially varying noisein PET images,” Progress in Biomedical Optics and Imaging, vol. 7, no. 3, 2006.
  • J. Weickert, Anisotropic Diffusion in Image Processing, European Consortium for Mathematics in Industry, B. G. Teubner, Stuttgart, Germany, 1998.
  • M. Alrefaya, H. Sahli, I. Vanhamel, and D. Hao, “A nonlinear probabilistic curvature motion filter for positron emission tomography images,” in Scale Space and Variational Methodsin Computer Vision , vol. 5567 of Lecture Notes in Computer Science, pp. 212–2223, 2009.
  • O. Demirkaya, “Anisotropic diffusion filtering of PET attenuation data to improve emission images,” Physics in Medicine and Biology, vol. 47, no. 20, pp. N271–N278, 2002.
  • W. Wang, “Anisotropic diffusion filtering for reconstruction of poisson noisy sinograms,” Journal of Communication and Computer, vol. 2, no. 11, pp. 16–23, 2005.
  • C. Negoita, R. A. Renaut, and A. Santos, “Nonlinear anisotropic diffusion in positron emission tomography kinetic imaging,” in SIAM Conference on Imaging Science, Salt Lake City, Utah, USA, 2004.
  • H. Zhu, H. Shu, J. Zhou, C. Toumoulin, and L. Luo, “Image reconstruction for positron emission tomography using fuzzy nonlinear anisotropic diffusion penalty,” Medical and Biological Engineering and Computing, vol. 44, no. 11, pp. 983–997, 2006.
  • H. Zhu, H. Shu, J. Zhou, X. Bao, and L. Luo, “Bayesian algorithms for PET image reconstruction with mean curvature and Gauss curvature diffusion regularizations,” Computers in Biology and Medicine, vol. 37, no. 6, pp. 793–804, 2007.
  • A. P. Happonen and M. O. Koskinen, “Experimental investigation of angular stackgram filtering for noise reduction of SPECT projection data: study with linear and nonlinear filters,” International Journal of Biomedical Imaging, vol. 2007, Article ID 38516, 2007.
  • A. A. Samsonov and C. R. Johnson, “Noise-adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels,” Magnetic Resonance in Medicine, vol. 52, no. 4, pp. 798–806, 2004.
  • A. Pizurica, P. Scheunders, and W. Philips, “Multiresolution multispectral image denoisingbased on probability of presence of features of interest,” in Proceedings of Advanced Concepts for Intelligent Vision Systems (Acivs '04), 2004.
  • I. Vanhamel, Vector valued nonlinear diffusion and its application to image segmentation [Ph.D. thesis], Vrije Universiteit Brussel, Faculty of Engineering Sciences, Electronics and Informatics (ETRO), Brussels, Belgium, 2006.
  • G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, Cambridge, UK, 2001.
  • A. Kuijper, “Geometrical PDEs based on second-order derivatives of gauge coordinates in image processing,” Image and Vision Computing, vol. 27, no. 8, pp. 1023–1034, 2009.
  • A. Pižurica, I. Vanhamel, H. Sahli, W. Philips, and A. Katartzis, “A Bayesian formulation of edge-stopping functions in nonlinear diffusion,” IEEE Signal Processing Letters, vol. 13, no. 8, pp. 501–504, 2006.
  • A. Teymurazyan, T. Riauka, H. S. Jans, and D. Robinson, “Properties of noise in positron emission tomography images reconstructed with filtered-back projection and row-action maximum likelihood algorithm,” Journal of Digital Imaging, vol. 26, no. 3, pp. 447–456, 2013.
  • G. Miller, H. F. Martz, T. T. Little, and R. Guilmette, “Using exact poisson likelihood functions in Bayesian interpretation of counting measurements,” Health Physics, vol. 83, no. 4, pp. 512–518, 2002.
  • H. A. Gersch, “Simple formula for the distortions in a Gaussian representation of a Poisson distribution,” American Journal of Physics, vol. 44, no. 9, pp. 885–886, 1976.
  • J. G. Skellam, “The frequency distribution of the difference between two Poisson variates belonging to different populations,” Journal of the Royal Statistical Society A, vol. 109, no. 3, p. 296, 1946.
  • X. Lei, H. Chen, D. Yao, and G. Luo, “An improved ordered subsets expectation maximization reconstruction,” in Advances in Natural Computation, vol. 4221, pp. 968–971, 2006.
  • I. Vanhamel, C. Mihai, H. Sahli, A. Katartzis, and I. Pratikakis, “Scale selection for compact scale-space representation of vector-valued images,” International Journal of Computer Vision, vol. 84, no. 2, pp. 194–204, 2009.
  • C. Comtat, P. E. Kinahan, J. A. Fessler et al., “Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels,” Physics in Medicine and Biology, vol. 47, no. 1, pp. 1–20, 2002.
  • W. J. Niessen, K. L. Vincken, J. A. Weickert, and M. A. Viergever, “Nonlinear multiscale representations for image segmentation,” Computer Vision and Image Understanding, vol. 66, no. 2, pp. 233–245, 1997.