Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2012, Special Issue (2012), Article ID 902312, 14 pages.

General Common Fixed Point Theorems and Applications

Shyam Lal Singh, Swami Nath Mishra, Renu Chugh, and Raj Kamal

Full-text: Open access

Abstract

The main result is a common fixed point theorem for a pair of multivalued maps on a complete metric space extending a recent result of Đ orić and Lazović (2011) for a multivalued map on a metric space satisfying Ćirić-Suzuki-type-generalized contraction. Further, as a special case, we obtain a generalization of an important common fixed point theorem of Ćirić (1974). Existence of a common solution for a class of functional equations arising in dynamic programming is also discussed.

Article information

Source
J. Appl. Math., Volume 2012, Special Issue (2012), Article ID 902312, 14 pages.

Dates
First available in Project Euclid: 3 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.jam/1357180325

Digital Object Identifier
doi:10.1155/2012/902312

Mathematical Reviews number (MathSciNet)
MR2880848

Zentralblatt MATH identifier
1276.54040

Citation

Singh, Shyam Lal; Mishra, Swami Nath; Chugh, Renu; Kamal, Raj. General Common Fixed Point Theorems and Applications. J. Appl. Math. 2012, Special Issue (2012), Article ID 902312, 14 pages. doi:10.1155/2012/902312. https://projecteuclid.org/euclid.jam/1357180325


Export citation

References

  • S. B. Nadler Jr., Hyperspaces of Sets: A Text with Research Questions, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, New York, NY, USA, 1978.
  • T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,” Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1861–1869, 2008.
  • M. Kikkawa and T. Suzuki, “Three fixed point theorems for generalized contractions with constants in complete metric spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 9, pp. 2942–2949, 2008.
  • S. B. Nadler Jr., “Multi-valued contraction mappings,” Pacific Journal of Mathematics, vol. 30, pp. 475–488, 1969.
  • G. Jungck, “Commuting mappings and fixed points,” The American Mathematical Monthly, vol. 83, no. 4, pp. 261–263, 1976.
  • A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and Applications, vol. 28, pp. 326–329, 1969.
  • A. Abkar and M. Eslamian, “Fixed point theorems for Suzuki generalized nonexpansive multivalued mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2010, Article ID 457935, 10 pages, 2010.
  • S. Dhompongsa and H. Yingtaweesittikul, “Fixed points for multivalued mappings and the metric completeness,” Fixed Point Theory and Applications, vol. 2009, Article ID 972395, 15 pages, 2009.
  • D. $\DJ $orić and R. Lazović, “Some Suzuki-type fixed point theorems for generalized multivalued mappings and applications,” Fixed Point Theory and Applications, vol. 2011, article 40, 2011.
  • G. Moţ and A. Petruşel, “Fixed point theory for a new type of contractive multivalued operators,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 9, pp. 3371–3377, 2009.
  • O. Popescu, “Two fixed point theorems for generalized contractions with constants in complete metric space,” Central European Journal of Mathematics, vol. 7, no. 3, pp. 529–538, 2009.
  • S. L. Singh and S. N. Mishra, “Coincidence theorems for certain classes of hybrid contractions,” Fixed Point Theory and Applications, vol. 2010, Article ID 898109, 14 pages, 2010.
  • S. L. Singh and S. N. Mishra, “Remarks on recent fixed point theorems,” Fixed Point Theory and Applications, vol. 2010, Article ID 452905, 18 pages, 2010.
  • S. L. Singh, H. K. Pathak, and S. N. Mishra, “On a Suzuki type general fixed point theorem with applications,” Fixed Point Theory and Applications, vol. 2010, Article ID 234717, 15 pages, 2010.
  • L. B. Ćirić, “Fixed points for generalized multi-valued contractions,” Matematički Vesnik, vol. 9(24), pp. 265–272, 1972.
  • S. Reich, “Fixed points of multi-valued functions,” Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali, vol. 51, pp. 32–35, 1971.
  • I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, Romania, 2001.
  • L. B. Ćirić, “On a family of contractive maps and fixed points,” Institut Mathématique. Publications. Nouvelle Série, vol. 17(31), pp. 45–51, 1974.
  • K. P. R. Sastry and S. V. R. Naidu, “Fixed point theorems for generalised contraction mappings,” Yokohama Mathematical Journal, vol. 28, no. 1-2, pp. 15–29, 1980.
  • L. B. Ćirić, “A generalization of Banach's contraction principle,” Proceedings of the American Mathematical Society, vol. 45, pp. 267–273, 1974.
  • R. Baskaran and P. V. Subrahmanyam, “A note on the solution of a class of functional equations,” Applicable Analysis, vol. 22, no. 3-4, pp. 235–241, 1986.
  • R. Bellman, Methods of Nonliner Analysis. Vol. II, Mathematics in Science and Engineering, Vol. 61-II, Academic Press, New York, NY, USA, 1973.
  • R. Bellman and E. S. Lee, “Functional equations in dynamic programming,” Aequationes Mathematicae, vol. 17, no. 1, pp. 1–18, 1978.
  • P. C. Bhakta and S. Mitra, “Some existence theorems for functional equations arising in dynamic pro-gramming,” Journal of Mathematical Analysis and Applications, vol. 98, no. 2, pp. 348–362, 1984.
  • N. A. Assad and W. A. Kirk, “Fixed point theorems for set-valued mappings of contractive type,” Pacific Journal of Mathematics, vol. 43, pp. 553–562, 1972.
  • B. Djafari Rouhani and S. Moradi, “Common fixed point of multivalued generalized $\phi $-weak contractive mappings,” Fixed Point Theory and Applications, vol. 2010, Article ID 708984, 13 pages, 2010.
  • I. A. Rus, “Fixed point theorems for multi-valued mappings in complete metric spaces,” Mathematica Japonica, vol. 20, pp. 21–24, 1975.
  • H. K. Pathak, Y. J. Cho, S. M. Kang, and B. S. Lee, “Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming,” Le Matematiche, vol. 50, no. 1, pp. 15–33, 1995.
  • S. L. Singh and S. N. Mishra, “On a Ljubomir Ćirić fixed point theorem for nonexpansive type maps with applications,” Indian Journal of Pure and Applied Mathematics, vol. 33, no. 4, pp. 531–542, 2002.