Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2012, Special Issue (2012), Article ID 653675, 17 pages.

Existence of 2 m - 1 Positive Solutions for Sturm-Liouville Boundary Value Problems with Linear Functional Boundary Conditions on the Half-Line

Yanmei Sun and Zengqin Zhao

Full-text: Open access

Abstract

By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.

Article information

Source
J. Appl. Math., Volume 2012, Special Issue (2012), Article ID 653675, 17 pages.

Dates
First available in Project Euclid: 3 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.jam/1357180275

Digital Object Identifier
doi:10.1155/2012/653675

Mathematical Reviews number (MathSciNet)
MR2948140

Citation

Sun, Yanmei; Zhao, Zengqin. Existence of $\mathrm{2}m-\mathrm{1}$ Positive Solutions for Sturm-Liouville Boundary Value Problems with Linear Functional Boundary Conditions on the Half-Line. J. Appl. Math. 2012, Special Issue (2012), Article ID 653675, 17 pages. doi:10.1155/2012/653675. https://projecteuclid.org/euclid.jam/1357180275


Export citation

References

  • J. Mao, Z. Zhao, and N. Xu, “The existence and uniqueness of positive solutions for integral boundary value problems,” Bulletin of the Malaysian Mathematical Sciences Society. Second Series, vol. 34, no. 1, pp. 153–164, 2011.
  • A. Boucherif, “Second-order boundary value problems with integral boundary conditions,” Nonlinear Analysis A, vol. 70, no. 1, pp. 364–371, 2009.
  • X. P. Liu, M. Jia, and W. G. Ge, “Existence of monotone positive solutions to a type of three-point boundary value problem,” Acta Mathematicae Applicatae Sinica, vol. 30, no. 1, pp. 111–119, 2007.
  • X. Ni and W. Ge, “Existence of multiple positive solutions for boundary value problems on the half-line,” Journal of Systems Science and Mathematical Sciences, vol. 26, no. 1, pp. 113–120, 2006.
  • M. H. Xing, K. M. Zhang, and H. L. Gao, “Existence of multiple positive solutions for general Sturm-Liouville boundary value problems on the half-line,” Acta Mathematica Scientia A, vol. 29, no. 4, pp. 929–939, 2009.
  • L. Liu, Z. Wang, and Y. Wu, “Multiple positive solutions of the singular boundary value problems for second-order differential equations on the half-line,” Nonlinear Analysis A, vol. 71, no. 7-8, pp. 2564–2575, 2009.
  • Z. Q. Zhao and F. S. Li, “Existence and uniqueness of positive solutions for some singular boundary value problems with linear functional boundary conditions,” Acta Mathematica Sinica, vol. 27, no. 10, pp. 2073–2084, 2011.
  • X. Zhang, L. Liu, and Y. Wu, “Existence of positive solutions for second-order semipositone differential equations on the half-line,” Applied Mathematics and Computation, vol. 185, no. 1, pp. 628–635, 2007.
  • H. Lian, H. Pang, and W. Ge, “Triple positive solutions for boundary value problems on infinite intervals,” Nonlinear Analysis A, vol. 67, no. 7, pp. 2199–2207, 2007.
  • C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, NY, USA, 1973.
  • R. W. Leggett and L. R. Williams, “Multiple positive fixed points of nonlinear operators on ordered Banach spaces,” Indiana University Mathematics Journal, vol. 28, no. 4, pp. 673–688, 1979.