Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2012, Special Issue (2012), Article ID 307939, 12 pages.

An Alternative HSS Preconditioner for the Unsteady Incompressible Navier-Stokes Equations in Rotation Form

Jia Liu

Full-text: Open access

Abstract

We study the preconditioned iterative method for the unsteady Navier-Stokes equations. The rotation form of the Oseen system is considered. We apply an efficient preconditioner which is derived from the Hermitian/Skew-Hermitian preconditioner to the Krylov subspace-iterative method. Numerical experiments show the robustness of the preconditioned iterative methods with respect to the mesh size, Reynolds numbers, time step, and algorithm parameters. The preconditioner is efficient and easy to apply for the unsteady Oseen problems in rotation form.

Article information

Source
J. Appl. Math., Volume 2012, Special Issue (2012), Article ID 307939, 12 pages.

Dates
First available in Project Euclid: 3 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.jam/1357179951

Digital Object Identifier
doi:10.1155/2012/307939

Mathematical Reviews number (MathSciNet)
MR2904546

Zentralblatt MATH identifier
1244.76080

Citation

Liu, Jia. An Alternative HSS Preconditioner for the Unsteady Incompressible Navier-Stokes Equations in Rotation Form. J. Appl. Math. 2012, Special Issue (2012), Article ID 307939, 12 pages. doi:10.1155/2012/307939. https://projecteuclid.org/euclid.jam/1357179951


Export citation

References

  • H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, NY, USA, 2005.
  • M. A. Olshanskii, “An iterative solver for the Oseen problem and numerical solution of incompressible Navier-Stokes equations,” Numerical Linear Algebra with Applications, vol. 6, no. 5, pp. 353–378, 1999.
  • M. A. Olshanskii, “A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 47-48, pp. 5515–5536, 2002.
  • M. A. Olshanskii, “Preconditioned iterations for the linearized Navier-Stokes system in the rotation form,” in Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, K. J. Bathe, Ed., pp. 1074–1077, 2003.
  • M. A. Olshanskii and A. Reusken, “Navier-Stokes equations in rotation form: a robust multigrid solver for the velocity problem,” SIAM Journal on Scientific Computing, vol. 23, no. 5, pp. 1683–1706, 2002.
  • F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Physics of Fluids, vol. 8, no. 12, pp. 2182–2189, 1965.
  • H. C. Elman, D. J. Silvester, and A. J. Wathen, “Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations,” Numerische Mathematik, vol. 90, no. 4, pp. 665–688, 2002.
  • M. Benzi, M. J. Gander, and G. H. Golub, “Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems,” BIT. Numerical Mathematics, vol. 43, pp. 881–900, 2003.
  • M. Benzi and G. H. Golub, “A preconditioner for generalized saddle point problems,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 1, pp. 20–41, 2004.
  • M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,” Acta Numerica, vol. 14, pp. 1–137, 2005.
  • M. Benzi and V. Simoncini, “On the eigenvalues of a class of saddle point matrices,” Numerische Mathematik, vol. 103, no. 2, pp. 173–196, 2006.
  • J. Liu, Preconditioned Krylov subspace methods for incompressible flow problems, Ph.D. thesis, Emory University, Ann Arbor, Mich, USA, 2006.
  • Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, Pa, USA, 2nd edition, 2003.
  • Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 3, pp. 856–869, 1986.
  • Z.-Z. Bai, G. H. Golub, and M. K. Ng, “Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems,” SIAM Journal on Matrix Analysis and Applications, vol. 24, no. 3, pp. 603–626, 2003.
  • V. Simoncini and M. Benzi, “Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 2, pp. 377–389, 2004/05.
  • O. A. Karakashian, “On a Galerkin-Lagrange multiplier method for the stationary Navier-Stokes equations,” SIAM Journal on Numerical Analysis, vol. 19, no. 5, pp. 909–923, 1982.
  • J. Peters, V. Reichelt, and A. Reusken, “Fast iterative solvers for discrete Stokes equations,” SIAM Journal on Scientific Computing, vol. 27, no. 2, pp. 646–666, 2005.
  • G. M. Kobelkov and M. A. Olshanskii, “Effective preconditioning of Uzawa type schemes for a generalized Stokes problem,” Numerische Mathematik, vol. 86, no. 3, pp. 443–470, 2000.