Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2012, Special Issue (2012), Article ID 402490, 12 pages.

A Relaxed Splitting Preconditioner for the Incompressible Navier-Stokes Equations

Ning-Bo Tan, Ting-Zhu Huang, and Ze-Jun Hu

Full-text: Open access

Abstract

A relaxed splitting preconditioner based on matrix splitting is introduced in this paper for linear systems of saddle point problem arising from numerical solution of the incompressible Navier-Stokes equations. Spectral analysis of the preconditioned matrix is presented, and numerical experiments are carried out to illustrate the convergence behavior of the preconditioner for solving both steady and unsteady incompressible flow problems.

Article information

Source
J. Appl. Math., Volume 2012, Special Issue (2012), Article ID 402490, 12 pages.

Dates
First available in Project Euclid: 3 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.jam/1357179950

Digital Object Identifier
doi:10.1155/2012/402490

Mathematical Reviews number (MathSciNet)
MR2948095

Zentralblatt MATH identifier
1251.76044

Citation

Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun. A Relaxed Splitting Preconditioner for the Incompressible Navier-Stokes Equations. J. Appl. Math. 2012, Special Issue (2012), Article ID 402490, 12 pages. doi:10.1155/2012/402490. https://projecteuclid.org/euclid.jam/1357179950


Export citation

References

  • H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, NY, USA, 2005.
  • R. Glowinski, “Finite element methods for incompressible viscous flow,” in Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, Eds., vol. 9, North-Holland, Amsterdam, The Netherlands, 2003, Numerical Methods for Fluids (part3).
  • M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,” Acta Numerica, vol. 14, pp. 1–137, 2005.
  • Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2nd edition, 2003.
  • H. C. Elman, V. E. Howle, J. Shadid, D. Silvester, and R. Tuminaro, “Least squares preconditioners for stabilized discretizations of the Navier-Stokes equations,” SIAM Journal on Scientific Computing, vol. 30, no. 1, pp. 290–311, 2007.
  • H. C. Elman and R. S. Tuminaro, “Boundary conditions in approximate commutator preconditioners for the Navier-Stokes equations,” Electronic Transactions on Numerical Analysis, vol. 35, pp. 257–280, 2009.
  • M. A. Olshanskii and Y. V. Vassilevski, “Pressure schur complement preconditioners for the discrete Oseen problem,” SIAM Journal on Scientific Computing, vol. 29, no. 6, pp. 2686–2704, 2007.
  • M. Benzi and M. A. Olshanskii, “An augmented Lagrangian-based approach to the oseen problem,” SIAM Journal on Scientific Computing, vol. 28, no. 6, pp. 2095–2113, 2006.
  • M. Benzi, M. A. Olshanskii, and Z. Wang, “Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, vol. 66, no. 4, pp. 486–508, 2011.
  • S. P. Hamilton, M. Benzi, and E. Haber, “New multigrid smoothers for the Oseen problem,” Numerical Linear Algebra with Applications, vol. 17, no. 2-3, pp. 557–576, 2010.
  • M. Benzi and Z. Wang, “Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier-Stokes equations,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2761–2784, 2011.
  • Z. Z. Bai, G. H. Golub, and M. K. Ng, “Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems,” SIAM Journal on Matrix Analysis and Applications, vol. 24, no. 3, pp. 603–626, 2003.
  • M. Benzi and G. H. Golub, “A preconditioner for generalized saddle point problems,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 1, pp. 20–41, 2004.
  • M. Benzi and J. Liu, “An efficient solver for the incompressible Navier-Stokes equations in rotation form,” SIAM Journal on Scientific Computing, vol. 29, no. 5, pp. 1959–1981, 2007.
  • L. Chan, M. K. Ng, and N. K. Tsing, “Spectral analysis for HSS preconditioners,” Numerical Mathematics, vol. 1, no. 1, pp. 57–77, 2008.
  • M. Benzi and X.-P. Guo, “A dimensional split preconditioner for stokes and linearized Navier-Stokes equations,” Applied Numerical Mathematics, vol. 61, no. 1, pp. 66–76, 2011.
  • M. Benzi, M. Ng, Q. Niu, and Z. Wang, “A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations,” Journal of Computational Physics, vol. 230, no. 16, pp. 6185–6202, 2011.
  • M. Benzi and D. B. Szyld, “Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods,” Numerische Mathematik, vol. 76, no. 3, pp. 309–321, 1997.
  • H. C. Elman, A. Ramage, and D. J. Silvester, “Algorithm 886: IFISS, a Matlab toolbox for modelling incompressible flow,” Association for Computing Machinery, vol. 33, no. 2, article 14, 2007.
  • P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum degree ordering algorithm,” SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 4, pp. 886–905, 1996.
  • T. A. Davis, Direct Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2006.