Journal of Applied Mathematics

Analysis of a System for Linear Fractional Differential Equations

Fang Wang, Zhen-hai Liu, and Ping Wang

Full-text: Open access

Abstract

The main purpose of this paper is to obtain the unique solution of the constant coefficient homogeneous linear fractional differential equations D t 0 q X ( t ) = P X ( t ) , X ( a ) = B and the constant coefficient nonhomogeneous linear fractional differential equations D t 0 q X ( t ) = P X ( t ) + D , X ( a ) = B if P is a diagonal matrix and X ( t ) C 1 - q [ t 0 , T ] × C 1 - q [ t 0 , T ] × × C 1 - q [ t 0 , T ] and prove the existence and uniqueness of these two kinds of equations for any P L ( R m ) and X ( t ) C 1 - q [ t 0 , T ] × C 1 - q [ t 0 , T ] × × C 1 - q [ t 0 , T ] . Then we give two examples to demonstrate the main results.

Article information

Source
J. Appl. Math., Volume 2012 (2012), Article ID 193061, 21 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.jam/1355495292

Digital Object Identifier
doi:10.1155/2012/193061

Mathematical Reviews number (MathSciNet)
MR2970430

Zentralblatt MATH identifier
1251.34012

Citation

Wang, Fang; Liu, Zhen-hai; Wang, Ping. Analysis of a System for Linear Fractional Differential Equations. J. Appl. Math. 2012 (2012), Article ID 193061, 21 pages. doi:10.1155/2012/193061. https://projecteuclid.org/euclid.jam/1355495292


Export citation