Journal of Applied Mathematics

An Analytical Approximation Method for Strongly Nonlinear Oscillators

Wang Shimin and Yang Lechang

Full-text: Open access

Abstract

An analytical method is proposed to get the amplitude-frequency and the phase-frequency characteristics of free/forced oscillators with nonlinear restoring force. The nonlinear restoring force is expressed as a spring with varying stiffness that depends on the vibration amplitude. That is, for stationary vibration, the restoring force linearly depends on the displacement, but the stiffness of the spring varies with the vibration amplitude for nonstationary oscillations. The varied stiffness is constructed by means of the first and second averaged derivatives of the restoring force with respect to the displacement. Then, this stiffness gives the amplitude frequency and the phase frequency characteristics of the oscillator. Various examples show that this method can be applied extensively to oscillators with nonlinear restoring force, and that the solving process is extremely simple.

Article information

Source
J. Appl. Math., Volume 2012 (2012), Article ID 958121, 9 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.jam/1355495059

Digital Object Identifier
doi:10.1155/2012/958121

Mathematical Reviews number (MathSciNet)
MR2889112

Zentralblatt MATH identifier
1334.70037

Citation

Shimin, Wang; Lechang, Yang. An Analytical Approximation Method for Strongly Nonlinear Oscillators. J. Appl. Math. 2012 (2012), Article ID 958121, 9 pages. doi:10.1155/2012/958121. https://projecteuclid.org/euclid.jam/1355495059


Export citation