Journal of Applied Mathematics

The Existence of Solutions for a Fractional 2 m -Point Boundary Value Problems

Gang Wang, Wenbin Liu, Jinyun Yang, Sinian Zhu, and Ting Zheng

Full-text: Open access

Abstract

By using the coincidence degree theory, we consider the following 2 m -point boundary value problem for fractional differential equation D 0 + α u t = f t , u t , D 0 + α - 1 u t , D 0 + α - 2 u t + e t , 0 < t < 1 , I 0 + 3 - α u t | t = 0 = 0 , D 0 + α - 2 u 1 = i = 1 m - 2 a i D 0 + α - 2 u ξ i , u 1 = i = 1 m - 2 b i u η i , where 2 < α 3 , D 0 + α and I 0 + α are the standard Riemann-Liouville fractional derivative and fractional integral, respectively. A new result on the existence of solutions for above fractional boundary value problem is obtained.

Article information

Source
J. Appl. Math., Volume 2012 (2012), Article ID 841349, 18 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.jam/1355495023

Digital Object Identifier
doi:10.1155/2012/841349

Mathematical Reviews number (MathSciNet)
MR2872361

Zentralblatt MATH identifier
1241.34012

Citation

Wang, Gang; Liu, Wenbin; Yang, Jinyun; Zhu, Sinian; Zheng, Ting. The Existence of Solutions for a Fractional 2 $m$ -Point Boundary Value Problems. J. Appl. Math. 2012 (2012), Article ID 841349, 18 pages. doi:10.1155/2012/841349. https://projecteuclid.org/euclid.jam/1355495023


Export citation