Journal of Applied Mathematics

Spline coalescence hidden variable fractal interpolation functions

A. K. B. Chand and G. P. Kapoor

Full-text: Open access

Abstract

This paper generalizes the classical spline using a new construction of spline coalescence hidden variable fractal interpolation function (CHFIF). The derivative of a spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of a nondiagonal iterated function system. Our construction generalizes the construction of Barnsley and Harrington (1989), when the construction is not restricted to a particular type of boundary conditions. Spline CHFIFs are likely to be potentially useful in approximation theory due to effects of the hidden variables and these effects are demonstrated through suitable examples in the present work.

Article information

Source
J. Appl. Math., Volume 2006 (2006), Article ID 36829, 17 pages.

Dates
First available in Project Euclid: 16 January 2007

Permanent link to this document
https://projecteuclid.org/euclid.jam/1168975522

Digital Object Identifier
doi:10.1155/JAM/2006/36829

Mathematical Reviews number (MathSciNet)
MR2268485

Zentralblatt MATH identifier
1146.41003

Citation

Chand, A. K. B.; Kapoor, G. P. Spline coalescence hidden variable fractal interpolation functions. J. Appl. Math. 2006 (2006), Article ID 36829, 17 pages. doi:10.1155/JAM/2006/36829. https://projecteuclid.org/euclid.jam/1168975522


Export citation

References

  • M. F. Barnsley, Fractal functions and interpolation, Constructive Approximation 2 (1986), no. 4, 303--329.
  • --------, Fractals Everywhere, Academic Press, Massachusetts, 1988.
  • M. F. Barnsley, J. Elton, D. Hardin, and P. R. Massopust, Hidden variable fractal interpolation functions, SIAM Journal on Mathematical Analysis 20 (1989), no. 5, 1218--1242.
  • M. F. Barnsley and A. N. Harrington, The calculus of fractal interpolation functions, Journal of Approximation Theory 57 (1989), no. 1, 14--34.
  • M. F. Barnsley and L. P. Hurd, Fractal Image Compression, A K Peters, Massachusetts, 1993.
  • A. K. B. Chand, A study on coalescence and spline fractal interpolation function, Ph.D. thesis, IIT Kanpur, Kanpur, 2005.
  • A. K. B. Chand and G. P. Kapoor, Hidden variable bivariate fractal interpolation surfaces, Fractals 11 (2003), no. 3, 277--288.
  • --------, Generalized cubic spline fractal interpolation functions, SIAM Journal on Numerical Analysis 44 (2006), no. 2, 655--676.
  • this reference, if possible.} --------, Coalescence hidden variable fractal interpolation functions and its smoothness analysis, preprint, 2005, http://arxiv.org/abs/math.DS/0511073.
  • H. H. Hardy and R. A. Beier, Fractals in Reservoir Engineering, World Scientific, Singapore, 1994.
  • J. E. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal 30 (1981), no. 5, 713--747.
  • B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, California, 1977.
  • P. Maragos, Fractal aspects of speech signals: dimension and interpolation, International Conference on Acoustics, Speech, and Signal Processing (ICASSP '91), vol. 1, Ontario, 1991, pp. 417--420.
  • P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, California, 1994.
  • D. S. Mazel and M. H. Hayes, Using iterated function systems to model discrete sequences, IEEE Transactions on Signal Processing 40 (1992), no. 7, 1724--1734.
  • M. A. Navascués, Fractal polynomial interpolation, Zeitschrift für Analysis und ihre Anwendungen 24 (2005), no. 2, 401--418.
  • M. A. Navascués and M. V. Sebastián, Some results of convergence of cubic spline fractal interpolation functions, Fractals 11 (2003), no. 1, 1--7.
  • --------, Generalization of Hermite functions by fractal interpolation, Journal of Approximation Theory 131 (2004), no. 1, 19--29.
  • --------, Smooth fractal interpolation, Journal of Inequalities and Applications, 2006 (2006), Article ID 78734, 20.