Journal of Applied Mathematics

Time averaging for functional differential equations

Mustapha Lakrib

Full-text: Open access

Abstract

We present a result on the averaging for functional differential equations on finite time intervals. The result is formulated in both classical mathematics and nonstandard analysis; its proof uses some methods of nonstandard analysis.

Article information

Source
J. Appl. Math., Volume 2003, Number 1 (2003), 1-16.

Dates
First available in Project Euclid: 7 April 2003

Permanent link to this document
https://projecteuclid.org/euclid.jam/1049725677

Digital Object Identifier
doi:10.1155/S1110757X03203077

Mathematical Reviews number (MathSciNet)
MR1981854

Zentralblatt MATH identifier
1047.34073

Subjects
Primary: 34C29: Averaging method 34K25
Secondary: 03H05

Citation

Lakrib, Mustapha. Time averaging for functional differential equations. J. Appl. Math. 2003 (2003), no. 1, 1--16. doi:10.1155/S1110757X03203077. https://projecteuclid.org/euclid.jam/1049725677


Export citation

References

  • N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, International Monographs on Advanced Mathematics and Physics, Gordon and Breach Science Publishers, New York, 1961.
  • F. Diener and M. Diener (eds.), Nonstandard Analysis in Practice, Universitext, Springer-Verlag, Berlin, 1995.
  • M. Diener and C. Lobry (eds.), Actes de l'École d'Été: Analyse Non Standard et Représentation du Réel [Proceedings of the Summer School on Nonstandard Analysis and Representation of the Real,], Office des Publications Universitaires, Algiers, 1985 (French).
  • M. Diener and G. Wallet (eds.), Mathématiques Finitaires & Analyse Non Standard. Tome 1, 2 [Finitary Mathematics and Nonstandard Analysis. Vol. 1, 2], Publications Mathématiques de l'Université Paris VII, vol. 31, Université de Paris VII U.E.R. de Mathématiques, Paris, 1989 (French).
  • J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983.
  • A. Halanay, On the method of averaging for differential equations with retarded argument, J. Math. Anal. Appl. 14 (1966), 70--76.
  • J. K. Hale, Averaging methods for differential equations with retarded arguments and a small parameter, J. Differential Equations 2 (1966), 57--73.
  • --------, Ordinary Differential Equations, Pure and Applied Mathematics, vol. 21, Wiley-Interscience, New York, 1969.
  • J. K. Hale and S. M. Verduyn Lunel, Averaging in infinite dimensions, J. Integral Equations Appl. 2 (1990), no. 4, 463--494.
  • --------, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993.
  • T. Janiak and E. Łuczak-Kumorek, A theorem on partial middling for functional-differential equations of the neutral type, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 16 (1986), no. 2, 107--119.
  • --------, The theorem of middling for functional-differential equations of neutral type, Discuss. Math. 11 (1991), 63--73.
  • M. Lakrib, Sur la moyennisation dans les systèmes à plusieurs fréquences, to appear in Maghreb Math. Rev.
  • --------, On the validity of the averaging method for all time, Maghreb Math. Rev. 8 (1999), no. 1-2, 119--128.
  • --------, The method of averaging and functional differential equations with delay, Int. J. Math. Math. Sci. 26 (2001), no. 8, 497--511.
  • M. Lakrib and T. Sari, Averaging method for functional differential equations, submitted.
  • R. Lutz and M. Goze, Nonstandard Analysis. A Practical Guide with Applications, Lecture Notes in Mathematics, vol. 881, Springer-Verlag, Berlin, 1981.
  • R. Lutz and T. Sari, Applications of nonstandard analysis to boundary value problems in singular perturbation theory, Theory and Applications of Singular Perturbations (Oberwolfach, 1981), Lecture Notes in Mathematics, vol. 942, Springer, Berlin, 1982, pp. 113--135.
  • G. N. Medvedev, Asymptotic solutions of some systems of differential equations with deviating argument, Soviet Math. Dokl. 9 (1968), 85--87.
  • E. Nelson, Internal set theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165--1198.
  • A. Robinson, Nonstandard Analysis, American Elsevier, New York, 1974.
  • J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol. 59, Springer-Verlag, New York, 1985.
  • T. Sari, Nonstandard perturbation theory of differential equations, presented as an invited talk at the International Research Symposium on Nonstandard Analysis and Its Applications, ICMS, Edinburgh, 11-17 August 1996.
  • --------, Stroboscopy and averaging, Colloque Trajectorien à la Mémoire de Georges Reeb et Jean-Louis Callot (Strasbourg-Obernai, 1995) (A. Fruchard and A. Troesch, eds.), Prépublication de l'Institut de Recherche Mathematique Avancee, Université Louis Pasteur, Strasbourg, 1995, pp. 95--124.