Journal of Applied Mathematics

Matrix variate Kummer-Dirichlet distributions

Arjun K. Gupta, Liliam Cardeño, and Daya K. Nagar

Full-text: Open access


The multivariate Kummer-Beta and multivariate Kummer-Gamma families of distributions have been proposed and studied recently by Ng and Kotz. These distributions are extensions of Kummer-Beta and Kummer-Gamma distributions. In this article we propose and study matrix variate generalizations of multivariate Kummer-Beta and multivariate Kummer-Gamma families of distributions.

Article information

J. Appl. Math., Volume 1, Number 3 (2001), 117-139.

First available in Project Euclid: 13 March 2003

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62E15: Exact distribution theory 62H99: None of the above, but in this section


Gupta, Arjun K.; Cardeño, Liliam; Nagar, Daya K. Matrix variate Kummer-Dirichlet distributions. J. Appl. Math. 1 (2001), no. 3, 117--139. doi:10.1155/S1110757X0100701X.

Export citation


  • C. Armero and M. J. Bayarri, A Bayesian analysis of a queueing system with unlimited service, J. Statist. Plann. Inference 58 (1997), no. 2, 241–261. \CMP1+450+0151 450 015
  • M. B. Gordy, Computationally convenient distributional assumptions for common-value auctions, Comput. Econom. 12 (1998), 61–78.
  • A. K. Gupta and D. K. Nagar, Matrix Variate Distributions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 104, Chapman & Hall/CRC, Florida, 2000.
  • W. R. Javier and A. K. Gupta, On generalized matric variate beta distributions, Statistics 16 (1985), no. 4, 549–557.
  • D. K. Nagar and L. Cardeño, Matrix variate Kummer-Gamma distribution, Random Oper. Stochastic Equations 9 (2001), no. 3, 207–218.
  • D. K. Nagar and A. K. Gupta, Matrix variate Kummer-Beta distribution, to appear in J. Austral. Math. Soc.
  • K. W. Ng and S. Kotz, Kummer-Gamma and Kummer-Beta univariate and multivariate distributions, Research report, Department of Statistics, The University of Hong Kong, Hong Kong, 1995.