International Statistical Review

Using Remote Sensing for Agricultural Statistics

Elisabetta Carfagna and F. Javier Gallego

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Remote sensing can be a valuable tool for agricultural statistics when area frames or multiple frames are used. At the design level, remote sensing typically helps in the definition of sampling units and the stratification, but can also be exploited to optimise the sample allocation and size of sampling units. At the estimator level, classified satellite images are generally used as auxiliary variables in a regression estimator or for estimators based on confusion matrixes. The most often used satellite images are LANDSAT-TM and SPOT-XS. In general, classified or photo-interpreted images should not be directly used to estimate crop areas because the proportion of pixels classified into the specific crop is often strongly biased. Vegetation indexes computed from satellite images can give in some cases a good indication of the potential crop yield.

Article information

Source
Internat. Statist. Rev., Volume 73, Number 3 (2005), 389-404.

Dates
First available in Project Euclid: 5 December 2005

Permanent link to this document
https://projecteuclid.org/euclid.isr/1133819160

Zentralblatt MATH identifier
1105.62111

Keywords
Area estimation Area frames Satellite images Regression estimator Yield estimation

Citation

Carfagna, Elisabetta; Javier Gallego, F. Using Remote Sensing for Agricultural Statistics. Internat. Statist. Rev. 73 (2005), no. 3, 389--404. https://projecteuclid.org/euclid.isr/1133819160


Export citation

References

  • [1] Allen, J.D. (1990). A Look at the Remote Sensing Applications Program of the National Agricultural Statistics Service. Journal of Official Statistics, 6, 393-409.
  • [2] Allen, J.D. & Hanuschak G.A. (1988). The Remote Sensing Applications Programme of The National Agricultural Statistics Service. Report SRB 88 08. NASS USDA. Washington.
  • [3] Ambrosio Flores, L. & Iglesias Martínez, L. (2000). Land cover estimation in small areas using ground survey and remote sensing. Remote Sensing of the Environment, 74, 240-248.
  • [4] Arbia, G. (1993). The use of GIS in spatial statistical surveys. International Statistical Review, 63(2), 339-359.
  • [5] Avenier, D., Perdig\~ao, V. & Terres, J.M. (1992). Méthodologie de stratification sur images satellitaires et utilisation d'un système d'information géographique; mise en place du plan d'échantillonnage. Agriculture series. JRC Ispra.
  • [6] Battese, G.E. & Fuller, W.A. (1981). Prediction of county crop areas using survey and satellite data. Survey section proceedings, 1981 American Statistical Association Annual meeting, Detroit, Michigan, pp. 500-505.
  • [7] Battese, G.E., Harter, R.M. & Fuller, W.A. (1988). An error-components model for prediction of county crop areas using survey and satellite data. Journal of the American Statistical Association, 83, 28-36.
  • [8] Bellow, M.E. (1994). Application of satellite data to crop area estimation at the county level. Research report no. STB-94-02, NASS, UDA. Washington D.C.
  • [9] Benedetti, R. & Palma, P. (1993). Towards crop yield estimate and forecast by Remote Sensing: the use of NOAA/NDVI data. Proc. of 49th ISI Session, Firenze, Book 4, 309-318.
  • [10] Brun, C., Delincé, J., Léo, O. & Porchier, J.C. (1992). Pilot use of the TER-UTI data in agricultural statistics procedure using remote sensing. The application of remote sensing to agricultural statistics, Office for Official Publications of the E.C. Luxembourg.
  • [11] Card, D. (1982). Using Known Map Category Marginal Frequencies to Improve Estimates of Thematic Map Accuracy. Photogrammetric Engineering and Remote Sensing, 48, 431-439.
  • [12] Carfagna, E. (1998). Area frame sample designs: a comparison with the MARS project. Proc. of Agricultural Statistics 2000, pp. 261-277. Voorburg: International Statistical Institute.
  • [13] Carfagna, E. (1999). The use of area frames and remote sensing for agricultural statistics, invited paper at Meeting on Food and Agricultural Statistics in Europe, Geneva. http://www.unece.org/stats/documents/1999.06.agri.htm
  • [14] Carfagna, E. (2001a). Note sull'uso dell'autocorrelazione spaziale nel disegno campionario areale. Atti della XL riunione scientifica della SocietàItaliana di Statistica, pp. 169-182, Firenze 26-28 Aprile 2000, Sessioni plenarie e specializzate.
  • [15] Carfagna, E. (2001b). Cost-effectiveness of remote sensing in agricultural and environmental statistics. Proc. of the Conference on Agricultural and Environmental Statistical Applications in Rome (CAESAR). June 5-7, Vol. 3, 618-627. http://www.ec-gis.org/
  • [16] Chhikara, R.S. (1984). Effect of mixed (boundary) pixels in crop proportion estimation. Remote Sensing of the Environment, 14, 207-218.
  • [17] Chhikara, R.S., Houston, A.G. & Lundgren, J.C. (1986). Crop acreage estimation using a LANDSAT based estimator as an auxiliary variable. IEEE transactions on Geoscience and Remote Sensing, GE 24(1), 157-168.
  • [18] Cochran, W. (1977). Sampling Techniques. New York: John Wiley and Sons.
  • [19] Congalton, R.G. & Green, K. (1999). Assessing the accuracy of remotely sensed data: principles and practices. Lewis publishers.
  • [20] Consorzio ITA (1987). Telerilevamento in Agricoltura, Previsione delle Produzioni di Frumento in Tempo Reale e Sviluppi Tecnologici. Ministero dell'Agricoltura. Roma.
  • [21] Cotter, J. & Tomczac, C. (1994). An Image Analysis System to Develop Area Sampling Frames for Agricultural Surveys. Photogrammetric Engineering and Remote Sensing, 60, 299-306.
  • [22] Czaplewski, R.L. & Catts, G.P. (1992). Calibration of remotely sensed proportion or area estimates for misclassification error. Remote Sensing of Environment, 39, 29-43.
  • [23] Delincé, J. (2001). A European approach to area frame survey. Proc. of the Conference on Agricultural and Environmental Statistical Applications in Rome (CAESAR), June 4-8, Vol. 2, 463-472. http://www.ec-gis.org/
  • [24] Deville, J.C. & Särndal, C.E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376-382.
  • [25] Dymond, J.R. (1992). How accurately do image classifiers estimate area? International Journal of Remote Sensing, 13, 1735-1742.
  • [26] Efron, B. & Tibshirani, R.J. (1993). An introduction to the Bootstrap. Chapman and Hall.
  • [27] FAO (1996). Multiple frame agricultural surveys, Vol. 1: current surveys based on area and list sampling methods. FAO statistical development series, n. 7, Rome.
  • [28] FAO (1998). Multiple frame agricultural surveys, Vol. 2, FAO statistical development series, n. 10, Rome.
  • [29] FAS (1997). The FAS remote sensing program. Proc. of the seminar on crop yield forecasting methods. Villefranche sur Mer, 24-27 October, 1994, pp. 111-114. Office for official publications of the European Communities.
  • [30] Fuller, W.A. (1999). Small area statistics for agriculture from a national survey. Proc. 52nd Session ISI, Helsinki, August 10-18, Invited papers, vol. 2, 397-400.
  • [31] Gallego, F.J. (2004). Remote sensing and land cover area estimation. International Journal of Remote Sensing, 25, 3019-3047.
  • [32] Gallego, F.J. & Carfagna, E. (1998). Some possible approaches to rapid crop area change estimation in a large region. Problemi statistici nel telerilevamento, Ed. L. Lionetti. Soveria Mannelli: Rubbettino.
  • [33] Gallego, F.J., Carfagna, E. & Peedell, S. (1999a). The use of CORINE Land Cover to improve area frame survey estimates in Spain. Research in Official Statistics, 2, 99-122.
  • [34] Gallego, F.J. & Delincé, J. (1994). Using a Confusion Matrix for Area Estimation with Remote Sensing. Atti Convegno Associazione Italiana Telerilevamento, Roma, pp. 99-102.
  • [35] Gallego, F.J., Delincé, J. & Rueda, C. (1993). Crop area estimates through remote sensing: stability of the regression correction. International Journal of Remote Sensing, 14, 3433-3445.
  • [36] Gallego, F.J., Feunette, I. & Carfagna, E. (1999b). Optimising the size of sampling units in an area frame. GeoENV II-Geostatistics for Environmental applications. Ed. J. Gómez-Hernández et al., vol. 10, pp. 393-404. Kluwer, Series: Quantitative geology and geostatistics.
  • [37] Genovese, G., Vignolles, C., Nègre, T. & Passera, G. (2001). A methodology for a combined use of normalised difference vegetation index and CORINE Land Cover data for crop yield monitoring and forecasting. A case study in Spain. Agronomie, 21, 91-111.
  • [38] González, F. & Cuevas, M. (1993). Remote sensing and agricultural statistics: crop area estimation through regression estimators and confusion matrices. International Journal of Remote Sensing, 14(6), 1215-1219.
  • [39] Gonzalez, M.E. & Hoza, C. (1978). Small-area estimation with application to unemployment and housing estimates. Journal of the American Statistical Association, 73(361), 7-15.
  • [40] Hansen, M.H., Hurwitz, W.N. & Madow, W.G. (1953). Sample Survey Methods and Theory. New York: John Wiley & Sons.
  • [41] Hanuschak, G., Hale, R., Craig, M., Mueller, R. & Hart, G. (2001). The new economics of remote sensing for agricultural statistics in the United States. Proc. of the Conference on Agricultural and Environmental Statistical Applications in Rome (CAESAR). June 5-7, Vol. 2, pp. XXII.1-10.
  • [42] Hay, A.M. (1988). The derivation of global estimates from a confusion matrix. International Journal of Remote Sensing, 9, 1395-1398.
  • [43] Kumar, M. & Monteith, J.L. (1981). Remote sensing of crop growth. In Plants and the daylight spectrum. Ed. H. Smith, pp. 133-144. New York: Academic Press.
  • [44] Lillesand, T.M. & Kiefer, R.W. (1999). Remote sensing and image interpretation, 4th ed., 750 pp. John Wiley & Sons.
  • [45] Malingreau, J.P., Tucker, C.J. & Laporte, N. (1989). AVHRR for monitoring global tropical deforestation. International Journal of Remote Sensing, 10, 855-867.
  • [46] Martino, L. (2003). The Agrit system for short-term estimates in agriculture: a project for 2004. DRAGON seminar, Krakov, July 9-11, 2003. http://www.stat.gov.pl/english/index.htm.
  • [47] Mayaux, Ph. & Lambin, E.F. (1995). Estimation of tropical forest area from coarse spatial resolution data: a two-step correction function for proportional errors due to spatial aggregation. Remote sensing of environment, 53, 1-15.
  • [48] McNairn, H., Ellis, J., Van der Sanden, J.J., Hirose, T. & Brown, R.J. (2002). Providing crop information using Radarsat-1 and satellite optical imagery. International Journal of Remote Sensing, 23(5), 851-870.
  • [49] Meyer-Roux, J. & Vossen, P. (1994). The first phase of the MARS Project (1988-1993): Overview, methods and results. The MARS Project: Overview and Perspectives, pp. 33-81. Office for Publications of the EC. Luxembourg.
  • [50] Ministry of Food, Agriculture and Forestry (1996). Remote sensing in agriculture. Crop acreage estimate and crop production forecasts. Edited by Consorzio Italiano per il Telerilevamento in Agricoltura, Rome.
  • [51] Pinty, B., Leprieur, C. & Verstraete, M. (1993). Towards a quantitative interpretation of vegetation indices. Part 1: Biophysical canopy properties and classical indices. Remote Sensing Reviews, 7, 127-150.
  • [52] Priesley, P. & Smith, J.L. (1987). Using Classification Error Matrices to Improve the Accuracy of Weighted Land-Cover Models. Photogrammetric Engineering and Remote Sensing, 53, 1258-1263.
  • [53] Rasmussen, M.S. (1998). Developing simple, operational consistent NDVI-vegetation models by applying environmental and climatic information. Part II: Crop yield assessment. International Journal of Remote Sensing, 19, 119-139.
  • [54] Roesch, F.A., Van Deusen, P.C. & Zhu, Z. (1995). A comparison of various estimators for updating forest area coverage using AVHRR and forest inventory data. Photogrammetric Engineering and Remote Sensing, 61, 307-311.
  • [55] Ruimy, A., Jarvis, P.G., Baldocchi, D.D. & Saugier, B. (1995). CO_2 Fluxes over Plant Canopies and Solar Radiation: A Review. Advances in Ecological Research, 26, 2-68.
  • [56] Schmidt, K.S. & Skidmore, A.K. (2001). Exploring spectral discrimination of grass species in African rangeland. International Journal of Remote Sensing, 22, 3421-3434.
  • [57] Seber, G. (1984). Multivariate observations. Wiley.
  • [58] Singh, R., Semwal, D.P., Rai, A. & Chhikara, R.S. (2002). Small area estimation of crop yield using remote sensing satellite data. International Journal of Remote Sensing, 23(1), 49-56.
  • [59] Sridhar, V.N., Dadhwal, V.K., Chaudhari, K.N., Sharma, R., Bairagi, G.D. & Sharma, A.K. (1994). Wheat production forecasting for a predominantly unirrigated region in Madhya Pradesh (India). International Journal of Remote Sensing, 15, 1307-1316.
  • [60] Taylor, J., Sannier, C., Delincé, J. & Gallego, F.J. (1997). Regional Crop Inventories in Europe Assisted by Remote Sensing: 1988-1993. Synthesis Report. Office for Publications of the EC. Luxembourg.
  • [61] Taylor, J.C., D'Souza, G. & Coleman, V.R. (1992). Vegetation conditions and yield indicators in England and Wales using NOAA-AVHRR data. Proc. of the Conference on the application of remote sensing to agricultural statistics, Belgirate, November 1991, pp. 249-256.
  • [62] Thompson, S.K. (1992). Sampling. John Wiley and Sons.
  • [63] Walker, G. & Sigman, R. (1984). The use of Landsat for County estimates of crop areas. Communications in Statistics - Theory and Methods, 23, 2975-2996. \pagebreak
  • [64] Walsh, T.A. & Burk, T.E. (1993). Calibration of satellite classification of land area. Remote Sensing of Environment, 46, 281-290.
  • [65] Wishahy, Z. (1994). Evaluation of area calculation from SPOT imageries. Canadian Conference on GIS. Ottawa, pp. 1296-1303.
  • [66] Yuan, D. (1997). A simulation comparison of three marginal area estimators for image classification. Photogrammetric Engineering and Remote Sensing, 63, 385-392.