## Involve: A Journal of Mathematics

• Involve
• Volume 12, Number 4 (2019), 585-605.

### When is $a^{n} + 1$ the sum of two squares?

#### Abstract

Using Fermat’s two squares theorem and properties of cyclotomic polynomials, we prove assertions about when numbers of the form $an+1$ can be expressed as the sum of two integer squares. We prove that $an+1$ is the sum of two squares for all $n∈ℕ$ if and only if $a$ is a square. We also prove that if $a≡0,1,2(mod4)$, $n$ is odd, and $an+1$ is the sum of two squares, then $aδ+1$ is the sum of two squares for all $δ|n$, $δ>1$. Using Aurifeuillian factorization, we show that if $a$ is a prime and $a≡1(mod4)$, then there are either zero or infinitely many odd $n$ such that $an+1$ is the sum of two squares. When $a≡3(mod4)$, we define $m$ to be the least positive integer such that $(a+1)∕m$ is the sum of two squares, and prove that if $an+1$ is the sum of two squares for $n$ odd, then $m|n$, and both $am+1$ and $n∕m$ are sums of two squares.

#### Article information

Source
Involve, Volume 12, Number 4 (2019), 585-605.

Dates
Revised: 20 June 2018
Accepted: 24 June 2018
First available in Project Euclid: 30 May 2019

https://projecteuclid.org/euclid.involve/1559181654

Digital Object Identifier
doi:10.2140/involve.2019.12.585

Mathematical Reviews number (MathSciNet)
MR3941600

Zentralblatt MATH identifier
07072541

#### Citation

Dresden, Greg; Hess, Kylie; Islam, Saimon; Rouse, Jeremy; Schmitt, Aaron; Stamm, Emily; Warren, Terrin; Yue, Pan. When is $a^{n} + 1$ the sum of two squares?. Involve 12 (2019), no. 4, 585--605. doi:10.2140/involve.2019.12.585. https://projecteuclid.org/euclid.involve/1559181654

#### References

• A. S. Bang, “Taltheoretiske undersøgelser”, Tidsskrift Math. $(5)$ 4 (1886), 70–80.
• A. S. Bang, “Taltheoretiske undersøgelser (fortsat, se. s. 80)”, Tidsskrift Math. $(5)$ 4 (1886), 130–137.
• J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of $b^n\pm 1$: $b=2,3,5,6,7,10,11,12$ up to high powers, 3rd ed., Contemporary Mathematics 22, American Mathematical Society, Providence, RI, 2002.
• Y. Bugeaud, M. Mignotte, and S. Siksek, “Classical and modular approaches to exponential Diophantine equations, I: Fibonacci and Lucas perfect powers”, Ann. of Math. $(2)$ 163:3 (2006), 969–1018.
• R. D. Carmichael, “On the numerical factors of the arithmetic forms $\alpha^n\pm\beta^n$”, Ann. of Math. $(2)$ 15:1-4 (1913/14), 49–70.
• D. A. Cox, Primes of the form $x^2 + ny^2:$ Fermat, class field theory and complex multiplication, John Wiley & Sons, New York, 1989.
• K. Curtis, “Sums of two squares: an analysis of numbers of the form $2^{n} + 1$ and $3^{n} + 1$”, preprint, 2014.
• K. Ford, B. Green, S. Konyagin, J. Maynard, and T. Tao, “Long gaps between primes”, J. Amer. Math. Soc. 31:1 (2018), 65–105.
• G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Oxford University Press, New York, 1979.
• C. Hooley, “On the intervals between numbers that are sums of two squares”, Acta Math. 127 (1971), 279–297.
• H. Iwaniec, “Primes of the type $\phi(x,\,y)+A$ where $\phi$ is a quadratic form”, Acta Arith. 21 (1972), 203–234.
• A. Kalmynin, “Intervals between numbers that are sums of two squares”, preprint, 2017.
• E. Landau, “Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindeszahl der zu ihrer additiven Zusammensetzung erforderlichen quadrate”, Arch. Math. Phys. 13 (1908), 305–312.
• D. H. Lehmer, “Some properties of the cyclotomic polynomial”, J. Math. Anal. Appl. 15 (1966), 105–117.
• E. Lucas, “Theorie des fonctions numeriques simplement periodiques”, Amer. J. Math. 1:2 (1878), 184–196.
• J. Maynard, “Small gaps between primes”, Ann. of Math. $(2)$ 181:1 (2015), 383–413.
• T. Nagell, “Løsning till oppgave nr 2”, Norsk Mat. Tidsskr. 30 (1948), 62–64.
• T. Nagell, Introduction to number theory, 2nd ed., Chelsea, New York, 1964.
• I. Richards, “On the gaps between numbers which are sums of two squares”, Adv. in Math. 46:1 (1982), 1–2.
• P. Stevenhagen, “On Aurifeuillian factorizations”, Nederl. Akad. Wetensch. Indag. Math. 49:4 (1987), 451–468.
• C. L. Stewart, “On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers”, Proc. London Math. Soc. $(3)$ 35:3 (1977), 425–447.
• I. Stewart and D. Tall, Algebraic number theory and Fermat's last theorem, 3rd ed., A K Peters, Natick, MA, 2002.
• S. S. Wagstaff, Jr., “The Cunningham Project”, website, http://homes.cerias.purdue.edu/~ssw/cun/index.html.
• Y. Zhang, “Bounded gaps between primes”, Ann. of Math. $(2)$ 179:3 (2014), 1121–1174.