Involve: A Journal of Mathematics

  • Involve
  • Volume 6, Number 4 (2013), 505-510.

A Pexider difference associated to a Pexider quartic functional equation in topological vector spaces

Saeid Ostadbashi, Abbas Najati, Mahsa Solaimaninia, and Themistocles M. Rassias

Full-text: Open access

Abstract

Let (G,+) be an Abelian group and X be a sequentially complete Hausdorff topological vector space over the field of rational numbers. We deal with a Pexider difference

2 f ( 2 x + y ) + 2 f ( 2 x y ) 2 g ( x + y ) 2 g ( x y ) 1 2 g ( x ) + 3 g ( y ) ,

where f and g are mappings defined on G and taking values in X. We investigate the Hyers–Ulam stability of the Pexiderized quartic functional equation

2 f ( 2 x + y ) + 2 f ( 2 x y ) = 2 g ( x + y ) + 2 g ( x y ) + 1 2 g ( x ) 3 g ( y )

in topological vector spaces.

Article information

Source
Involve, Volume 6, Number 4 (2013), 505-510.

Dates
Received: 23 January 2013
Accepted: 28 January 2013
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.involve/1513733616

Digital Object Identifier
doi:10.2140/involve.2013.6.505

Mathematical Reviews number (MathSciNet)
MR3115983

Zentralblatt MATH identifier
1280.39018

Subjects
Primary: 39B82: Stability, separation, extension, and related topics [See also 46A22]
Secondary: 34K20: Stability theory 54A20: Convergence in general topology (sequences, filters, limits, convergence spaces, etc.)

Keywords
Hyers–Ulam stability quartic mapping topological vector space

Citation

Ostadbashi, Saeid; Najati, Abbas; Solaimaninia, Mahsa; Rassias, Themistocles M. A Pexider difference associated to a Pexider quartic functional equation in topological vector spaces. Involve 6 (2013), no. 4, 505--510. doi:10.2140/involve.2013.6.505. https://projecteuclid.org/euclid.involve/1513733616


Export citation

References

  • M. Adam and S. Czerwik, “On the stability of the quadratic functional equation in topological spaces”, Banach J. Math. Anal. 1:2 (2007), 245–251.
  • T. Aoki, “On the stability of the linear transformation in Banach spaces”, J. Math. Soc. Japan 2 (1950), 64–66.
  • L. Cădariu and V. Radu, “A Hyers–Ulam–Rassias stability theorem for a quartic functional equation”, Automat. Comput. Appl. Math. 13:1 (2004), 31–39.
  • J. K. Chung and P. K. Sahoo, “On the general solution of a quartic functional equation”, Bull. Korean Math. Soc. 40:4 (2003), 565–576.
  • S. Czerwik, Functional equations and inequalities in several variables, World Scientific, River Edge, NJ, 2002.
  • S. Czerwik, Stability of functional equations of Ulam–Hyers–Rassias type, Hadronic Press, Palm Harbor, FL, 2003.
  • G. L. Forti, “Hyers–Ulam stability of functional equations in several variables”, Aequationes Math. 50:1-2 (1995), 143–190.
  • D. H. Hyers, “On the stability of the linear functional equation”, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222–224.
  • D. H. Hyers and T. M. Rassias, “Approximate homomorphisms”, Aequationes Math. 44:2-3 (1992), 125–153.
  • D. H. Hyers, G. Isac, and T. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications 34, Birkhäuser, Boston, MA, 1998.
  • S.-M. Jung, Hyers–Ulam–Rassias stability of functional equations in mathematical analysis, Hadronic Press, Palm Harbor, FL, 2001.
  • S. H. Lee, S. M. Im, and I. S. Hwang, “Quartic functional equations”, J. Math. Anal. Appl. 307:2 (2005), 387–394.
  • A. Najati, “On the stability of a quartic functional equation”, J. Math. Anal. Appl. 340:1 (2008), 569–574.
  • T. M. Rassias, “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc. 72:2 (1978), 297–300.
  • S. M. Ulam, Problems in modern mathematics, Wiley, New York, 1964.