Involve: A Journal of Mathematics

  • Involve
  • Volume 6, Number 4 (2013), 493-504.

On the difference between an integer and the sum of its proper divisors

Nichole Davis, Dominic Klyve, and Nicole Kraght

Full-text: Open access

Abstract

Let σ(n) be the sum of the divisors of n. Although much attention has been paid to the possible values of σ(n)n (the sum of proper divisors), comparatively little work has been done on the possible values of e(n):=σ(n)2n. Here we present some theoretical and computational results on these values. In particular, we exhibit some infinite and possibly infinite families of integers that appear in the image of e(n). We also find computationally all values of n<1020 for which e(n) is odd, and we present some data from our computations. At the end of this paper, we present some conjectures suggested by our computational work.

Article information

Source
Involve, Volume 6, Number 4 (2013), 493-504.

Dates
Received: 7 December 2012
Revised: 18 May 2013
Accepted: 20 May 2013
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.involve/1513733615

Digital Object Identifier
doi:10.2140/involve.2013.6.493

Mathematical Reviews number (MathSciNet)
MR3115982

Zentralblatt MATH identifier
1322.11005

Subjects
Primary: 11A25: Arithmetic functions; related numbers; inversion formulas 11Y70: Values of arithmetic functions; tables

Keywords
sigma function sum of divisors excedents computational mathematics

Citation

Davis, Nichole; Klyve, Dominic; Kraght, Nicole. On the difference between an integer and the sum of its proper divisors. Involve 6 (2013), no. 4, 493--504. doi:10.2140/involve.2013.6.493. https://projecteuclid.org/euclid.involve/1513733615


Export citation

References

  • A. Anavi, P. Pollack, and C. Pomerance, “On congruences of the form $\sigma(n)\equiv a$ (mod $n$)”, Int. J. Number Theory 9:1 (2013), 115–124.
  • D. M. Burton, Elementary number theory, Allyn and Bacon, Boston, 1976. Reprinted McGraw-Hill, 1998.
  • P. Cattaneo, “Sui numeri quasiperfetti”, Boll. Un. Mat. Ital $(3)$ 6 (1951), 59–62.
  • Y.-G. Chen and Q.-Q. Zhao, “Nonaliquot numbers”, Publ. Math. Debrecen 78:2 (2011), 439–442.
  • N. G. Chudakov, “\cyr O probleme Golp1dbakha”, Dokl. Akad. Nauk SSSR $($N.S.$)$ 17 (1937), 335–338.
  • G. L. Cohen, Generalised quasiperfect numbers, Ph.D. thesis, Univ. New South Wales, Sydney, 1982. Abstracted in Bull. Australian Math. Soc. \bf27:1 (1983), 153–155.
  • J. van der Corput, “Sur l'hypothèse de Goldbach pour presque tous les nombres pairs”, Acta Arith. 2:2 (1936), 266–290.
  • J. van der Corput, “Sur l'hypothèse de Goldbach”, Proc. Akad. Wet. Amsterdam 41 (1938), 76–80.
  • P. Erdős, “Über die Zahlen der Form $\sigma (n)-n$ und $n-\phi(n)$”, Elem. Math. 28 (1973), 83–86.
  • T. Estermann, “On Goldbach's problem: proof that almost all even positive integers are sums of two primes”, Proc. Lond. Math. Soc. $(2)$ 2:1 (1938), 307–314.
  • P. Hagis, Jr. and G. L. Cohen, “Some results concerning quasiperfect numbers”, J. Austral. Math. Soc. Ser. A 33:2 (1982), 275–286.
  • A. M\kakowski, “Remarques sur les fonctions $\theta (n),\,\varphi (n)$ et $\sigma (n)$”, Mathesis 69 (1960), 302–303.
  • P. Pollack and C. Pomerance, “On the distribution of some integers related to perfect and amicable numbers”, Colloq. Math. 130:2 (2013), 169–182.
  • P. Pollack and V. Shevelev, “On perfect and near-perfect numbers”, J. Number Theory 132:12 (2012), 3037–3046.
  • C. Pomerance, “On the congruences $\sigma (n)\equiv a$ $({\rm mod}\ n)$ and $n\equiv a$ $({\rm mod}\ \varphi (n))$”, Acta Arith. 26:3 (1975), 265–272.
  • C. Pomerance and H.-S. Yang, “Variant of a theorem of Erdős on the sum-of-proper-divisors function”, (2012).
  • N. Robbins, Beginning number theory, 2nd ed., Jones & Bartlett, Sudbury, MA, 2006.