Involve: A Journal of Mathematics

  • Involve
  • Volume 4, Number 3 (2011), 251-261.

On three questions concerning groups with perfect order subsets

Lenny Jones and Kelly Toppin

Full-text: Open access


In a finite group, an order subset is a maximal set of elements of the same order. We discuss three questions about finite groups G having the property that the cardinalities of all order subsets of G divide the order of G. We provide a new proof to one of these questions and evidence to support answers to the other two questions.

Article information

Involve, Volume 4, Number 3 (2011), 251-261.

Received: 23 July 2010
Accepted: 15 June 2011
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20F99: None of the above, but in this section 11Y05: Factorization
Secondary: 11A51: Factorization; primality

perfect order subsets abelian group symmetric group


Jones, Lenny; Toppin, Kelly. On three questions concerning groups with perfect order subsets. Involve 4 (2011), no. 3, 251--261. doi:10.2140/involve.2011.4.251.

Export citation


  • A. S. Bang, “Taltheoretiske undersøgelser”, Tidsskr. Math. $(5)$ 4 (1886), 70–80, 130–137.
  • P. L. Chebyshev, “Mémoire sur les nombres premiers”, J. Math. Pures Appl. $(1)$ 17 (1852), 366–390.
  • S. Chowla, I. N. Herstein, and W. K. Moore, “On recursions connected with symmetric groups, I”, Canadian J. Math. 3 (1951), 328–334.
  • A. K. Das, “On finite groups having perfect order subsets”, Int. J. Algebra 3:13 (2009), 629–637.
  • C. E. Finch and L. Jones, “A curious connection between Fermat numbers and finite groups”, Amer. Math. Monthly 109:6 (2002), 517–524.
  • C. E. Finch and L. Jones, “Nonabelian groups with perfect order subsets”, JP J. Algebra Number Theory Appl. 3:1 (2003), 13–26. Corrigendum in 4:2 (2004), 413–416.
  • H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs 4, Academic Press, London, 1974.
  • S. Libera and P. Tlucek, “Some perfect order subset groups”, Pi Mu Epsilon J. 11:9 (2003), 495–498.
  • W. Ljunggren, “Noen setninger om ubestemte likninger av formen $\displaystyle\smash{\frac{x\sp n-1}{x-1}}=y\sp q$”, Norsk Mat. Tidsskr. 25 (1943), 17–20.
  • J. Nagura, “On the interval containing at least one prime number”, Proc. Japan Acad. 28:4 (1952), 177–181.
  • N. T. Tuan and B. X. Hai, “On perfect order subsets in finite groups”, Int. J. Algebra 4:21 (2010), 1021–1029.