Involve: A Journal of Mathematics

  • Involve
  • Volume 9, Number 4 (2016), 623-638.

Mathematical modeling of a surface morphological instability of a thin monocrystal film in a strong electric field

Aaron Wingo, Selahittin Cinar, Kurt Woods, and Mikhail Khenner

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/involve.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A partial differential equation (PDE)-based model combining the effects of surface electromigration and substrate wetting is developed for the analysis of the morphological instability of a monocrystalline metal film in a high temperature environment typical to operational conditions of microelectronic interconnects and nanoscale devices. The model accounts for the anisotropies of the atomic mobility and surface energy. The goal is to describe and understand the time-evolution of the shape of the film surface. The formulation of a nonlinear parabolic PDE problem for the height function h(x,t) of the film in the electric field is presented, followed by the results of the linear stability analysis of a planar surface. Computations of a fully nonlinear evolution equation are presented and discussed.

Article information

Source
Involve, Volume 9, Number 4 (2016), 623-638.

Dates
Received: 28 January 2015
Revised: 8 July 2015
Accepted: 31 July 2015
First available in Project Euclid: 22 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.involve/1511371047

Digital Object Identifier
doi:10.2140/involve.2016.9.623

Mathematical Reviews number (MathSciNet)
MR3530203

Zentralblatt MATH identifier
1342.35459

Subjects
Primary: 35R37: Moving boundary problems 35Q74: PDEs in connection with mechanics of deformable solids 37N15: Dynamical systems in solid mechanics [See mainly 74Hxx] 65Z05: Applications to physics 74H55: Stability

Keywords
nonlinear evolution PDEs electromigration surface diffusion morphology stability

Citation

Wingo, Aaron; Cinar, Selahittin; Woods, Kurt; Khenner, Mikhail. Mathematical modeling of a surface morphological instability of a thin monocrystal film in a strong electric field. Involve 9 (2016), no. 4, 623--638. doi:10.2140/involve.2016.9.623. https://projecteuclid.org/euclid.involve/1511371047


Export citation

References

  • A. Averbuch, E. Glickman, M. Israeli, M. Khenner, and M. Nathan, “Level set modeling of transient electromigration grooving”, Comp. Mater. Sci. 20 (2001), 235–250.
  • F. Barakat, K. Martens, and O. Pierre-Louis, “Nonlinear wavelength selection in surface faceting under electromigration”, Phys. Rev. Lett. 109:5 (2012), Article ID #056101.
  • C. H. W. Barnes, A. B. Dominguez, L. L. Felix, S. I. Khondaker, Y. Majima, T. Mitrelias, F. Sfigakis, and L. Valladares, “Controlled electroplating and electromigration in nickel electrodes for nanogap formation”, Nanotechnology 21 (2010), Article ID #445304.
  • T. Block, G. Gardinowski, H. Pfnür, J. Schmeidel, and C. Tegenkamp, “Switchable nanometer contacts: ultrathin Ag nanostructures on Si(100)”, Appl. Phys. Lett. 89:6 (2006), Article ID #063120.
  • K. I. Bolotin, F. Kuemmeth, D. C. Ralph, and T. Taychatanapat, “Imaging electromigration during the formation of break junctions”, Nano Lett. 7 (2007), 652–656.
  • P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: a variable-coefficient ODE solver”, SIAM J. Sci. Stat. Comput. 10:5 (1989), 1038–1051.
  • J. W. Cahn and J. E. Taylor, “Linking anisotropic sharp and diffuse surface motion laws via gradient flows”, J. Stat. Phys. 77:1–2 (1994), 183–197.
  • J. W. Cahn, C. A. Handwerker, and J. E. Taylor, “Geometric models of crystal growth”, Acta Met. Mat. 40 (1992), 1443–1474.
  • J. Chang, C. Misbah, and O. Pierre-Louis, “Birth and morphological evolution of step bunches under electromigration”, Phys. Rev. Lett. 96:19 (2006), Article ID #195901.
  • S. Dai, R. Yu, J. Zhao, and J. Zhu, “Kinetical faceting of the low index W surfaces under electrical current”, Surf. Sci. 625 (2014), 10–15.
  • S. H. Davis, A. A. Golovin, M. S. Levine, and T. V. Savina, “Faceting instability in the presence of wetting interactions: a mechanism for the formation of quantum dots”, Phys. Rev. B 70:23 (2004), Article ID #235342.
  • J.-M. Debierre, M. Dufay, and T. Frisch, “Electromigration-induced step meandering on vicinal surfaces: nonlinear evolution equation”, Phys. Rev. B 75:4 (2007), Article ID #045413.
  • A. Di Carlo, M. E. Gurtin, and P. Podio-Guidugli, “A regularized equation for anisotropic motion-by-curvature”, SIAM J. Appl. Math. 52:4 (1992), 1111–1119.
  • H. T. Dobbs and J. Krug, “Current-induced faceting of crystal surfaces”, Phys. Rev. Lett. 73:14 (1994), 1947–1950.
  • S. P. A. Gill and T. Wang, “On the existence of a critical perturbation amplitude for the Stranski–Krastanov transition”, Surf. Sci. 602 (2008), 3560–3568.
  • E. Hairer and G. Wanner, “Stiff differential equations solved by Radau methods”, J. Comput. Appl. Math. 111:1-2 (1999), 93–111.
  • M. Khenner, “Comparative study of a solid film dewetting in an attractive substrate potentials with the exponential and the algebraic decay”, Math. Model. Nat. Phenom. 3:5 (2008), 16–29.
  • M. Khenner, “Morphologies and kinetics of a dewetting ultrathin solid film”, Phys. Rev. B 77:24 (2008), Article ID #245445.
  • M. Khenner, “Analysis of a combined influence of substrate wetting and surface electromigration on a thin film stability and dynamical morphologies”, C. R. Physique 14 (2013), 607–618.
  • M. Khenner, M. Levine, and W. T. Tekalign, “Stability of a strongly anisotropic thin epitaxial film in a wetting interaction with elastic substrate”, Eur. Phys. Lett. 93:2 (2011), Article ID #26001.
  • J. Krug and M. Schimschak, “Surface electromigration as a moving boundary value problem”, Phys. Rev. Lett. 78 (1997), 278–281.
  • F. Liu and H. Metiu, “Dynamics of phase separation of crystal surfaces”, Phys. Rev. B 48:9 (1993), Article ID #5808.
  • D. Maroudas, “Dynamics of transgranular voids in metallic thin films under electromigration conditions”, Appl. Phys. Lett. 67 (1995), 798–800.
  • W. W. Mullins, “Solid surface morphologies governed by capillarity”, pp. 17 in Metal surfaces: structure, energetics and kinetics, American Society for Metals, Cleveland, OH, 1963.
  • P. Saucez, W. E. Schiesser, and A. Vande Wouwer (editors), Adaptive method of lines, Chapman and Hall, Boca Raton, FL, 2001.
  • W. E. Schiesser, Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs, CRC, Boca Raton, FL, 1994.
  • S. Stoyanov, “Current-induced step bunching at vicinal surfaces during crystal sublimation”, Surf. Sci. 370 (1997), 345–354.
  • J. G. Verwer and J. M. Sanz-Serna, “Convergence of method of lines approximations to partial differential equations”, Computing 33:3-4 (1984), 297–313.
  • Wolfram, “Mathematica”, 2016, hook http://www.wolfram.com/mathematica \posturlhook.