Institute of Mathematical Statistics Collections

A note on reference limits

Jing-Ye Huang, Lin-An Chen, and A. H. Welsh

Full-text: Open access

Abstract

We introduce a conceptual framework within which the problem of setting reference intervals is one of estimating population parameters. The framework enables us to broaden the possibilities for inference by showing how to create confidence intervals for population intervals. We propose a new kind of interval (the γ-mode interval) as the population parameter of interest and show how to estimate and make optimal inference about this interval. Finally, we clarify the relationship between our reference intervals and other types of intervals.

Chapter information

Source
J. Antoch, M. Hušková and P.K. Sen, eds., Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: A Festschrift in honor of Professor Jana Jurečková (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2010), 84-94

Dates
First available in Project Euclid: 29 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.imsc/1291044745

Digital Object Identifier
doi:10.1214/10-IMSCOLL709

Mathematical Reviews number (MathSciNet)
MR2808369

Subjects
Primary: 62F25: Tolerance and confidence regions
Secondary: 62G15: Tolerance and confidence regions

Keywords
confidence interval coverage interval inter-fractile interval mode interval reference interval reference limits tolerance interval

Rights
Copyright © 2010, Institute of Mathematical Statistics

Citation

Huang, Jing-Ye; Chen, Lin-An; Welsh, A. H. A note on reference limits. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: A Festschrift in honor of Professor Jana Jurečková, 84--94, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2010. doi:10.1214/10-IMSCOLL709. https://projecteuclid.org/euclid.imsc/1291044745


Export citation

References

  • [1] Carroll, R. J. and Ruppert, D. (1991). Prediction and tolerance intervals with transformation and/or weighting. Technometrics 33 197–210.
  • [2] Chen, L.-A. and Hung, N.-H. (2006). Extending the discussion on coverage intervals and statistical coverage intervals. Metrologia 43 L43–L44.
  • [3] Chen, L.-A., Huang, J.-Y., and Chen, H.-C. (2007). Parametric coverage interval. Metrologia 44 L7–L9.
  • [4] Dybkær, R. and Solberg, H. E. (1987). International Federation of Clinical Chemistry (IFCC). Approved recommendation (1987) on the theory of reference values. Part 6. Presentation of observed values related to reference values. Clinica Chimica Acta 170 33–42; J. Clinical Chemistry and Clinical Biochemistry 25 657–662.
  • [5] Eaton, M. L, Muirhead, R. J., and Pickering, E. H. (2006). Assessing a vector of clinical observations. J. Statist. Plan. Inf. 136 3383–3414.
  • [6] Goodman, L. A. and Madansky, A. (1962). Parameter-free and nonparametric tolerance limits: the exponential case. Technometrics 4 75–96.
  • [7] Guenther, W. C. (1972). Tolerance intervals for univariate distributions. Naval Research Logistics Quarterly 19 310–333.
  • [8] Guttman, I. (1970). Statistical tolerance regions: Classical and Bayesian. Griffin, London.
  • [9] Holst, E. and Christensen, J. M. (1992). Intervals for the description of the biological level of a trace element in a reference population. The Statistician 41 233–242.
  • [10] Howe, W. G. (1969). Two-sided tolerance limits for normal populations - some improvements. J. Amer. Statist. Assoc. 64 610–620.
  • [11] Krishnamoorthy, K. and Mathew, T. (2009). Statistical Tolerance Regions: Theory, Application and Computation. Wiley, New York.
  • [12] NCCLS C28-A2 (1995). How to define and determine reference intervals in the clinical laboratory: Approved Guideline. Second edition. Villanova, PA, National Committee for Clinical Laboratory Standards.
  • [13] Owen, D. B. (1964). Control of percentage in both tails of the normal distribution. Technometrics 6 377–387.
  • [14] Patel, J. K. (1986). Tolerance limits – A review. Communications in Statistics – Theory and Methods 15 2719–2762.
  • [15] Paulson, E. (1943). A note on tolerance limits. Ann. Math. Statist. 14 90–93.
  • [16] Petitclerc, C. and Solberg, H. E. (1987). International Federation of Clinical Chemistry (IFCC). Approved recommendation (1987) on the theory of reference values. Part 2. Selection of individuals for the production of reference values. Clinica Chimica Acta 170 1–12; J. Clinical Chemistry and Clinical Biochemistry 25 639–644.
  • [17] Poulsen, O. M., Holst, E., and Christensen, J. M. (1997). Calculation and application of coverage intervals for biological reference values (technical report). Pure and Applied Chemistry 69 1601–1611.
  • [18] Proschan, F. (1953). Confidence and tolerance intervals for the normal distribution. J. Amer. Statist. Assoc. 48 550–564.
  • [19] Solberg, H. E. (1987). International Federation of Clinical Chemistry (IFCC). Approved recommendation (1986) on the theory of reference values. Part 1. The concept of reference values. Annales de Biologie Clinique 45 237–241; Clinica Chimica Acta 165 111–118; J. Clinical Chemistry and Clinical Biochemistry 25 337–42.
  • [20] Solberg, H. E. 1987. International Federation of Clinical Chemistry (IFCC). Approved recommendation (1987) on the theory of reference values. Part 5. Statistical treatment of collected reference values. Determination of reference limits. Clinica Chimica Acta 170 13–32; J. Clinical Chemistry and Clinical Biochemistry 25 645–656.
  • [21] Trost, D. C. (2006). Multivariate probability-based detection of drug-induced hepatic signals. Toxicol. Review 25 37–54.
  • [22] Wald, A. (1943). An extension of Wilks’ method for setting tolerance limits. Ann. Math. Statist. 14 45–55.
  • [23] Wald, A. and Wolfowitz, J. (1946). Tolerance limits for a normal distribution. Ann. Math. Statist. 17 208–218.
  • [24] Willink, R. (2004). Coverage intervals and statistical coverage intervals. Metrologia 41 L5–L6.
  • [25] Wilks, S. S. (1941). Determination of sample sizes for setting tolerance limits. Ann. Math. Statist. 12 91–96.