Institute of Mathematical Statistics Collections
- Collections
- Volume 6, 2010, 70-86
High-dimensional variable selection for Cox’s proportional hazards model
Jianqing Fan, Yang Feng, and Yichao Wu
Abstract
Variable selection in high dimensional space has challenged many contemporary statistical problems from many frontiers of scientific disciplines. Recent technological advances have made it possible to collect a huge amount of covariate information such as microarray, proteomic and SNP data via bioimaging technology while observing survival information on patients in clinical studies. Thus, the same challenge applies in survival analysis in order to understand the association between genomics information and clinical information about the survival time. In this work, we extend the sure screening procedure [6] to Cox’s proportional hazards model with an iterative version available. Numerical simulation studies have shown encouraging performance of the proposed method in comparison with other techniques such as LASSO. This demonstrates the utility and versatility of the iterative sure independence screening scheme.
Chapter information
Source
Dates
First available in Project Euclid: 26 October 2010
Permanent link to this document
https://projecteuclid.org/euclid.imsc/1288099013
Digital Object Identifier
doi:10.1214/10-IMSCOLL606
Subjects
Primary: 62N02: Estimation
Secondary: 62J99: None of the above, but in this section
Keywords
Cox’s proportional hazards model variable selection
Rights
Copyright © 2010, Institute of Mathematical Statistics
Citation
Fan, Jianqing; Feng, Yang; Wu, Yichao. High-dimensional variable selection for Cox’s proportional hazards model. Borrowing Strength: Theory Powering Applications – A Festschrift for Lawrence D. Brown, 70--86, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2010. doi:10.1214/10-IMSCOLL606. https://projecteuclid.org/euclid.imsc/1288099013
References
- [1] Cox, D. R. (1972). Regression models and life-tables (with discussion). J. Roy. Statist. Soc. Ser. B 34 187–220.
- [2] Cox, D. R. (1975). Partial likelihood. Biometrika 62 269–76.Mathematical Reviews (MathSciNet): MR400509Zentralblatt MATH: 0312.62002Digital Object Identifier: doi:10.1093/biomet/62.2.269JSTOR: links.jstor.org
- [3] Fan, J., Feng, Y. and Song, R. (2010). Nonparametric independence screening in sparse ultra-high dimensional additive models. Submitted.Mathematical Reviews (MathSciNet): MR2847969Zentralblatt MATH: 1232.62064Digital Object Identifier: doi:10.1198/jasa.2011.tm09779
- [4] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348–1360.Mathematical Reviews (MathSciNet): MR1946581Zentralblatt MATH: 1073.62547Digital Object Identifier: doi:10.1198/016214501753382273JSTOR: links.jstor.org
- [5] Fan, J. and Li, R. (2002). Variable selection for cox’s proportional hazards model and frailty model. Ann. Statist. 30 74–99.Mathematical Reviews (MathSciNet): MR1892656Zentralblatt MATH: 1012.62106Digital Object Identifier: doi:10.1214/aos/1015362185Project Euclid: euclid.aos/1015362185
- [6] Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space (with discussion). J. Roy. Statist. Soc. Ser. B 70 849–911.Mathematical Reviews (MathSciNet): MR2530322Digital Object Identifier: doi:10.1111/j.1467-9868.2008.00674.x
- [7] Fan, J., Samworth, R. and Wu, Y. (2009). Ultrahigh dimensional variable selection: beyond the lienar model. J. Mach. Learn. Res. To appear.Mathematical Reviews (MathSciNet): MR2550099Zentralblatt MATH: 1235.62089
- [8] Fan, J. and Song, R. (2010). Sure independence screening in generalized linear models with np-dimensionality. Ann. Statist. To appear.Mathematical Reviews (MathSciNet): MR2766861Zentralblatt MATH: 1206.68157Digital Object Identifier: doi:10.1214/10-AOS798Project Euclid: euclid.aos/1291126966
- [9] Faraggi, D. and Simon, R. (1998). Bayesian variable selection method for censored survival data. Biometrics 54 1475–5.Mathematical Reviews (MathSciNet): MR1671590Digital Object Identifier: doi:10.2307/2533672JSTOR: links.jstor.orgZentralblatt MATH: 1058.62511
- [10] Ibrahim, J. G., Chen, M.-H. and Maceachern, S. N. (1999). Bayesian variable selection for proportional hazards models. Canand. J. Statist. 27 70117.Mathematical Reviews (MathSciNet): MR1767142Digital Object Identifier: doi:10.2307/3316126JSTOR: links.jstor.orgZentralblatt MATH: 0957.62018
- [11] Klein, J. P. and Moeschberger, M. L. (2005). Survival Analysis, 2nd ed. Springer.
- [12] Li, Y. and Dicker, L. (2009). Dantzig selector for censored linear regression. Technical report, Harvard Univ. Biostatistics.Zentralblatt MATH: 1285.62075
- [13] Oberthuer, A., Berthold, F., Warnat, P., Hero, B., Kahlert, Y., Spitz, R., Ernestus, K., König, R., Haas, S., Eils, R., Schwab, M., Brors, B., Westermann, F. and Fischer, M. (2006). Customized oligonucleotide microarray gene expressionbased classification of neuroblastoma patients outperforms current clinical risk stratification. Journal of Clinical Oncology 24 5070–5078.
- [14] Sauerbrei, W. and Schumacher, M. (1992). A bootstrap resampling procedure for model building: Application to the cox regression model. Statist. Med. 11 2093–2109.
- [15] Tibshirani, R. (1997). The lasso method for variable selection in the cox model. Statist. Med. 16 385–95.
- [16] Tibshirani, R. J. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267–288.
- [17] Wu, Y. and Liu, Y. (2009). Variable selection in quantile regression. Statist. Sinica 19 801–817.Mathematical Reviews (MathSciNet): MR2514189Zentralblatt MATH: 1166.62012
- [18] Zhang, C.-H. (2009). Penalized linear unbiased selection. Ann. Statist. To appear.
- [19] Zhang, H. H. and Lu, W. (2007). Adaptive lasso for cox’s proportional hazards model. Biometrika 94 691–703.Mathematical Reviews (MathSciNet): MR2410017Zentralblatt MATH: 1135.62083Digital Object Identifier: doi:10.1093/biomet/asm037
- [20] Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418–1429.Mathematical Reviews (MathSciNet): MR2279469Zentralblatt MATH: 1171.62326Digital Object Identifier: doi:10.1198/016214506000000735
- [21] Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Ann. Statist. 36 1509–1566.Mathematical Reviews (MathSciNet): MR2435443Digital Object Identifier: doi:10.1214/009053607000000802Project Euclid: euclid.aos/1216237287Zentralblatt MATH: 1142.62027
- [22] Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67 301–320.Mathematical Reviews (MathSciNet): MR2137327Zentralblatt MATH: 1069.62054Digital Object Identifier: doi:10.1111/j.1467-9868.2005.00503.xJSTOR: links.jstor.org

