Institute of Mathematical Statistics Collections

Some results on random circulant matrices

Mark W. Meckes

Full-text: Open access


This paper considers random (non-Hermitian) circulant matrices, and proves several results analogous to recent theorems on non-Hermitian random matrices with independent entries. In particular, the limiting spectral distribution of a random circulant matrix is shown to be complex normal, and bounds are given for the probability that a circulant sign matrix is singular.

Chapter information

Christian Houdré, Vladimir Koltchinskii, David M. Mason and Magda Peligrad, eds., High Dimensional Probability V: The Luminy Volume (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2009), 213-223

First available in Project Euclid: 2 February 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 15A52
Secondary: 60F05: Central limit and other weak theorems

random matrix circulant matrix eigenvalues

Copyright © 2009, Institute of Mathematical Statistics


Meckes, Mark W. Some results on random circulant matrices. High Dimensional Probability V: The Luminy Volume, 213--223, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2009. doi:10.1214/09-IMSCOLL514.

Export citation


  • [1] Adamczak, R. (2009). A few remarks on the operator norm of random Toeplitz matrices. J. Theoret. Probab. To appear.
  • [2] Apostol, T. M. (1976). Introduction to Analytic Number Theory. Springer-Verlag, New York. Undergraduate Texts in Mathematics.
  • [3] Bercu, B. and Bryc, W. (2007). Asymptotic results for empirical measures of weighted sums of independent random variables. Electron. Comm. Probab. 12 184–198 (electronic).
  • [4] Bhattacharya, R. N. and Ranga Rao, R. (1986). Normal Approximation and Asymptotic Expansions. Robert E. Krieger Publishing Co. Inc., Melbourne, FL. Reprint of the 1976 original.
  • [5] Bose, A. and Mitra, J. (2002). Limiting spectral distribution of a special circulant. Statist. Probab. Lett. 60(1) 111–120.
  • [6] Bose, A. and Sen, A. (2008). Another look at the moment method for large dimensional random matrices. Electron. J. Probab. 13(21) 588–628.
  • [7] Bourgain, J., Vu, V. and Wood, P. (2009). On the singularity probability of discretely random complex matrices. Preprint. Available at
  • [8] Bryc, W., Dembo, A. and Jiang, T. (2006). Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34(1) 1–38.
  • [9] Bryc, W. and Sethuraman, S. (2009). On the maximum eigenvalue for circulant matrices. IMS Coll. 5 179–184.
  • [10] Chatterjee, S. (2009). Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Related Fields 143(1, 2) 1–40.
  • [11] Davis, R. A. and Mikosch, T. (1999). The maximum of the periodogram of a non-Gaussian sequence. Ann. Probab. 27(1) 522–536.
  • [12] Friedland, O. and Sodin, S. (2007). Bounds on the concentration function in terms of the Diophantine approximation. C. R. Math. Acad. Sci. Paris 345(9) 513–518.
  • [13] Gozlan, N. (2009). A characterization of dimension free concentration in terms of transportation inequalities. Preprint. Available at
  • [14] Hammond, C. and Miller, S. J. (2005). Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab. 18(3) 537–566.
  • [15] Hungerford, T. W. (1980). Algebra. Graduate Texts in Mathematics 73. Springer-Verlag, New York. Reprint of the 1974 original.
  • [16] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29(2) 295–327.
  • [17] Kahn, J., Komlós, J. and Szemerédi, E. (1995). On the probability that a random ±1-matrix is singular. J. Amer. Math. Soc. 8(1) 223–240.
  • [18] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics. Springer-Verlag, New York.
  • [19] Ledoux, M. (2001). The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence, RI.
  • [20] Massey, A., Miller, S. J. and Sinsheimer, J. (2007). Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices. J. Theoret. Probab. 20(3) 637–662.
  • [21] Meckes, M. W. (2004). Concentration of norms and eigenvalues of random matrices. J. Funct. Anal. 211(2) 508–524.
  • [22] Meckes, M. W. (2007). On the spectral norm of a random Toeplitz matrix. Electron. Comm. Probab. 12 315–325 (electronic).
  • [23] Mehta, M. L. (2004). Random Matrices, 3rd ed. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam.
  • [24] Soshnikov, A. (1999). Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207(3) 697–733.
  • [25] Soshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Statist. Phys. 108(5, 6) 1033–1056. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays.
  • [26] Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. (81) 73–205.
  • [27] Tao, T. and Vu, V. (2009). Random matrices: Universality of ESDs and the circular law. Preprint. Available at With an appendix by M. Krishnapur.
  • [28] Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159(1) 151–174.