Institute of Mathematical Statistics Collections

J. K. Ghosh’s contribution to statistics: A brief outline

Bertrand Clarke and Subhashis Ghosal

Full-text: Open access

Abstract

Professor Jayanta Kumar Ghosh has contributed massively to various areas of Statistics over the last five decades. Here, we survey some of his most important contributions. In roughly chronological order, we discuss his major results in the areas of sequential analysis, foundations, asymptotics, and Bayesian inference. It is seen that he progressed from thinking about data points, to thinking about data summarization, to the limiting cases of data summarization in as they relate to parameter estimation, and then to more general aspects of modeling including prior and model selection.

Chapter information

Source
Bertrand Clarke and Subhashis Ghosal, eds., Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2008), 1-18

Dates
First available in Project Euclid: 28 April 2008

Permanent link to this document
https://projecteuclid.org/euclid.imsc/1209398456

Digital Object Identifier
doi:10.1214/074921708000000011

Subjects
Primary: 62
Secondary: 62

Keywords
Bartlett corrections Bayesian nonparametrics Edgeworth expansions foundations of statistics model selection noninformative prior posterior convergence second order efficiency semiparametric inference sequential analysis

Rights
Copyright © 2008, Institute of Mathematical Statistics

Citation

Clarke, Bertrand; Ghosal, Subhashis. J. K. Ghosh’s contribution to statistics: A brief outline. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, 1--18, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2008. doi:10.1214/074921708000000011. https://projecteuclid.org/euclid.imsc/1209398456


Export citation

References

  • [1] Amewou-Atisso, M., Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (2003). Posterior consistency for semi-parametric regression problems. Bernoulli 9 291–312.
  • [2] Basu, D. and Ghosh, J. K. (1969). Sufficient statistics in sampling from a finite universe. Bull. Inst. Internat. Statist. 42 850–858.
  • [3] Berger, J. O., Ghosh, J. K. and Mukhopadhyay, N. (2003). Approximations and consistency of Bayes factors as model dimension grows. J. Statist. Plann. Inference 112 241–258.
  • [4] Bhanja, J. and Ghosh, J. K. (1992). Efficient estimation with many nuisance parameters. I. Sankhyā Ser. A 54 1–39.
  • [5] Bhanja, J. and Ghosh, J. K. (1992). Efficient estimation with many nuisance parameters. II. Sankhyā Ser. A 54 135–156.
  • [6] Bhanja, J. and Ghosh, J. K. (1992). Efficient estimation with many nuisance parameters. III. Sankhyā Ser. A 54 297–308.
  • [7] Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann. Statist. 6 434–451.
  • [8] Bhattacharya, R. N. and Ghosh, J. K. (1988). On moment conditions for valid formal Edgeworth expansions. J. Multivariate Anal. 27 68–79.
  • [9] Bickel, P. J. and Ghosh, J. K. (1990). A decomposition for the likelihood ratio statistic and the Bartlett correction – a Bayesian argument. Ann. Statist. 18 1070–1090.
  • [10] Chakrabarti, A. and Ghosh, J. K. (2006). Optimality of AIC in inference about Brownian motion. Ann. Inst. Statist. Math. 58 1–20.
  • [11] Chakrabarti, A. and Ghosh, J. K. (2006). A generalization of BIC for the general exponential family. J. Statist. Plann. Inference 136 2847–2872.
  • [12] Chandra, T. K. and Ghosh, J. K. (1978). Comparison of tests with same Bahadur efficiency. Sankhyā Ser. A 40 253–277.
  • [13] Chandra, T. K. and Ghosh, J. K. (1979). Valid asymptotic expansions for the likelihood ratio statistic and other perturbed chi-square variables. Sankhyā Ser. A 41 22–47.
  • [14] Chandra, T. K. and Ghosh, J. K. (1980). Valid asymptotic expansions for the likelihood ratio and other statistics under contiguous alternatives. Sankhyā Ser. A 42 170–184.
  • [15] Clarke, B. and Ghosh, J. K. (1995). Posterior convergence given the mean. Ann. Statist. 23 2116–2144.
  • [16] DasGupta, A. and Ghosh, J. K. (1983). Some remarks on second-order admissibility in the multiparameter case. Sankhyā Ser. A 45 181–190.
  • [17] Datta, G. S. and Ghosh, J. K. (1995). On priors providing frequentist validity for Bayesian inference. Biometrika 82 37–45.
  • [18] Datta, G. S. and Ghosh, J. K. (1995). Noninformative priors for maximal invariant parameter in group models. Test 4 95–114.
  • [19] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1997). Non-informative priors via sieves and packing numbers. In Advances in Statistical Decision Theory and Applications 119–132. Stat. Ind. Technol. Birkhäuser, Boston.
  • [20] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999). Consistent semiparametric Bayesian inference about a location parameter. J. Statist. Plann. Inference 77 181–193.
  • [21] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27 143–158.
  • [22] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999). Consistency issues in Bayesian nonparametrics. In Asymptotics, Nonparametrics, and Time Series 639–667. Statist. Textbooks Monogr. 158. Dekker, New York.
  • [23] Ghosal, S., Ghosh, J. K. and Samanta, T. (1995). On convergence of posterior distributions. Ann. Statist. 23 2145–2152.
  • [24] Ghosal, S., Ghosh, J. K. and Samanta, T. (1999). Approximation of the posterior distribution in a change-point problem. Ann. Inst. Statist. Math. 51 479–497.
  • [25] Ghosal, S., Ghosh, J. K. and van der Vaart, A. W. (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500–531.
  • [26] Ghosh, J. K. (1960). On some properties of sequential t-test. Calcutta Statist. Assoc. Bull. 9 77–86.
  • [27] Ghosh, J. K. (1960). On the monotonicity of the OC of a class of sequential probability ratio tests. Calcutta Statist. Assoc. Bull. 9 139–144.
  • [28] Ghosh, J. K. (1961). On the optimality of probability ratio tests in sequential and multiple sampling. Calcutta Statist. Assoc. Bull. 10 73–92.
  • [29] Ghosh, J. K. (1964). Bayes solutions in sequential problems for two or more terminal decisions and related results. Calcutta Statist. Assoc. Bull. 13 101–122.
  • [30] Ghosh, J. K. (1971). A new proof of the Bahadur representation of quantiles and an application. Ann. Math. Statist. 42 1957–1961.
  • [31] Ghosh, J. K. (1991). Higher order asymptotics for the likelihood ratio, Rao’s and Wald’s tests. Statist. Probab. Lett. 12 505–509.
  • [32] Ghosh, J. K. (1994). Higher Order Asymptotics. NSF-CBMS Regional Conference in Probability and Statistics 4. IMS, Hayward, CA.
  • [33] Ghosh, J. K. and Chaudhuri, A. R. (1984). An invariant SPRT for identification. Sequential Anal. 3 99–120.
  • [34] Ghosh, J. K., Delampady, M. and Samanta, T. (2007). An Introduction to Bayesian Analysis, Theory and Methods. Springer, New York.
  • [35] Ghosh, J. K., Ghosal, S. and Samanta, T. (1994). Stability and convergence of the posterior in non-regular problems. In Statistical Decision Theory and Related Topics V 183–199. Springer, New York.
  • [36] Ghosh, J. K., Hjort, N. L., Messan, C. and Ramamoorthi, R. V. (2006). Bayesian bivariate survival estimation. J. Statist. Plann. Inference 136 2297–2308.
  • [37] Ghosh, J. K., Morimoto, H. and Yamada, S. (1981). Neyman factorization and minimality of pairwise sufficient subfields. Ann. Statist. 9 514–530.
  • [38] Ghosh, J. K. and Mukerjee, R. (1989). Some optimality results on Stein’s two-stage sampling. In Statistical Data Analysis and Inference 251–256. North-Holland, Amsterdam.
  • [39] Ghosh, J. K. and Mukerjee, R. (1990). Improvement in Stein’s procedure using a random confidence coefficient. Calcutta Statist. Assoc. Bull. 40 145–152.
  • [40] Ghosh, J. K. and Mukerjee, R. (1991). Characterization of priors under which Bayesian and frequentist Bartlett corrections are equivalent in the multiparameter case. J. Multivariate Anal. 38 385–393.
  • [41] Ghosh, J. K. and Mukerjee, R. (1992). Bayesian and frequentist Bartlett corrections for likelihood ratio and conditional likelihood ratio tests. J. Roy. Statist. Soc. Ser. B 54 867–875.
  • [42] Ghosh, J. K. and Mukerjee, R. (1992). Non-informative priors. In Bayesian Statistics 4 195–210. Oxford Univ. Press, New York.
  • [43] Ghosh, J. K. and Mukerjee, R. (1993). On priors that match posterior and frequentist distribution functions. Canad. J. Statist. 21 89–96.
  • [44] Ghosh, J. K. and Mukerjee, R. (1993). Frequentist validity of highest posterior density regions in the multiparameter case. Ann. Inst. Statist. Math. 45 293–302.
  • [45] Ghosh, J. K. and Mukerjee, R. (1994). Adjusted versus conditional likelihood: power properties and Bartlett-type adjustment. J. Roy. Statist. Soc. Ser. B 56 185–188.
  • [46] Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters. Statist. Decisions 13 131–139.
  • [47] Ghosh, J. K. and Mukerjee, R. (1995). On perturbed ellipsoidal and highest posterior density regions with approximate frequentist validity. J. Roy. Statist. Soc. Ser. B 57 761–769.
  • [48] Ghosh, J. K. and Mukerjee, R. (2001). Test statistics arising from quasi likelihood: Bartlett adjustment and higher-order power. J. Statist. Plann. Inference 97 45–55.
  • [49] Ghosh, J. K., Mukerjee, R. and Sen, P. K. (1996). Second-order Pitman admissibility and Pitman closeness: the multiparameter case and Stein-rule estimators. J. Multivariate Anal. 57 52–68.
  • [50] Ghosh, J. K., Purkayastha, S. and Samanta, T. (2004). Sequential probability ratio tests based on improper priors. Sequential Anal. 23 585–602.
  • [51] Ghosh, J. K. and Ramamoorthi, R. V. (1995). Consistency of Bayesian inference for survival analysis with or without censoring. In Analysis of Censored Data. IMS Lecture Notes Monogr. Ser. 27. IMS, Hayward, CA.
  • [52] Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. Springer, New York.
  • [53] Ghosh, J. K., Ramamoorthi, R. V. and Srikanth, K. R. (1999). Bayesian analysis of censored data. Statist. Probab. Lett. 41 255–265.
  • [54] Ghosh, J. K. and Roy, K. K. (1972). Families of densities with non-constant carriers which have finite dimensional sufficient statistics. Sankhyā Ser. A 34 205–226.
  • [55] Ghosh, J. K. and Samanta, T. (2001). Model selection – an overview. Current Science 80 (9), 1135–1144.
  • [56] Ghosh, J. K. and Samanta, T. (2002). Nonsubjective Bayes testing – an overview. J. Statist. Plann. Inference 103 205–223.
  • [57] Ghosh, J. K. and Samanta, T. (2002). Towards a nonsubjective Bayesian paradigm. Uncertainty and Optimality 1–69. World Sci. Publ., River Edge, NJ.
  • [58] Ghosh, J. K., Sen, P. K. and Mukerjee, R. (1994). Second-order Pitman closeness and Pitman admissibility. Ann. Statist. 22 1133–1141.
  • [59] Ghosh, J. K. and Sinha, B. K. (1981). A necessary and sufficient condition for second order admissibility with applications to Berkson’s bioassay problem. Ann. Statist. 9 1334–1338.
  • [60] Ghosh, J. K. and Sinha, B. K. (1982). Third order efficiency of the MLE – a counterexample. Calcutta Statist. Assoc. Bull. 31 151–158.
  • [61] Ghosh, J. K., Sinha, B. K. and Joshi, S. N. (1982). Expansions for posterior probability and integrated Bayes risk. In Statistical Decision Theory and Related Topics III 1 403–456. Academic Press, New York.
  • [62] Ghosh, J. K., Sinha, B. K. and Subramanyam, K. (1979). Edgeworth expansions for Fisher-consistent estimators and second order efficiency. Calcutta Statist. Assoc. Bull. 28 1–18.
  • [63] Ghosh, J. K., Sinha, B. K. and Wieand, H. S. (1980). Second order efficiency of the MLE with respect to any bounded bowl-shaped loss function. Ann. Statist. 8 506–521.
  • [64] Ghosh, J. K. and Subramanyam, K. (1974). Second order efficiency of maximum likelihood estimators. Sankhyā Ser. A 36 325–358.
  • [65] Hall, W. J., Wijsman, R. A. and Ghosh, J. K. (1965). The relationship between sufficiency and invariance with applications in sequential analysis. Ann. Math. Statist. 36 575–614.
  • [66] Mukhopadhyay, N. and Ghosh, J. K. (2003). Parametric empirical Bayes model selection – some theory, methods and simulation. In Probability, Statistics and Their Applications: Papers in Honor of Rabi Bhattacharya 229–245. IMS Lecture Notes Monogr. Ser. 41. IMS, Beachwood, OH.
  • [67] Mukhopadhyay, N., Ghosh, J. K. and Berger, J. O. (2005). Some Bayesian predictive approaches to model selection. Statist. Probab. Lett. 73 369–379.
  • [68] Tokdar, S. T. and Ghosh, J. K. (2007). Posterior consistency of logistic Gaussian process priors in density estimation. J. Statist. Plann. Inference 137 34–42.