Open Access
2018 Invariant CR mappings between hyperquadrics
Dusty Grundmeier, Kemen Linsuain, Brendan Whitaker
Illinois J. Math. 62(1-4): 321-340 (2018). DOI: 10.1215/ijm/1552442665

Abstract

We analyze a canonical construction of group-invariant CR Mappings between hyperquadrics due to D’Angelo. Given source hyperquadric of $Q(1,1)$, we determine the signature of the target hyperquadric for all finite subgroups of $SU(1,1)$. We also extend combinatorial results proven by Loehr, Warrington, and Wilf on determinants of sparse circulant determinants. We apply these results to study CR mappings invariant under finite subgroups of $U(1,1)$.

Citation

Download Citation

Dusty Grundmeier. Kemen Linsuain. Brendan Whitaker. "Invariant CR mappings between hyperquadrics." Illinois J. Math. 62 (1-4) 321 - 340, 2018. https://doi.org/10.1215/ijm/1552442665

Information

Received: 15 March 2018; Revised: 31 July 2018; Published: 2018
First available in Project Euclid: 13 March 2019

zbMATH: 07036789
MathSciNet: MR3922419
Digital Object Identifier: 10.1215/ijm/1552442665

Subjects:
Primary: 05A15 , 15A15 , 32H35 , 32V20

Rights: Copyright © 2018 University of Illinois at Urbana-Champaign

Vol.62 • No. 1-4 • 2018
Back to Top