Open Access
2018 The profile decomposition for the hyperbolic Schrödinger equation
Benjamin Dodson, Jeremy L. Marzuola, Benoit Pausader, Daniel P. Spirn
Illinois J. Math. 62(1-4): 293-320 (2018). DOI: 10.1215/ijm/1552442664

Abstract

In this note, we prove the profile decomposition for hyperbolic Schrödinger (or mixed signature) equations on $\mathbb{R}^{2}$ in two cases, one mass-supercritical and one mass-critical. First, as a warm up, we show that the profile decomposition works for the ${\dot{H}}^{\frac{1}{2}}$ critical problem. Then, we give the derivation of the profile decomposition in the mass-critical case based on an estimate of Rogers-Vargas (J. Functional Anal. 241(2) (2006), 212–231).

Citation

Download Citation

Benjamin Dodson. Jeremy L. Marzuola. Benoit Pausader. Daniel P. Spirn. "The profile decomposition for the hyperbolic Schrödinger equation." Illinois J. Math. 62 (1-4) 293 - 320, 2018. https://doi.org/10.1215/ijm/1552442664

Information

Received: 13 November 2018; Revised: 13 November 2018; Published: 2018
First available in Project Euclid: 13 March 2019

zbMATH: 07036788
MathSciNet: MR3922418
Digital Object Identifier: 10.1215/ijm/1552442664

Subjects:
Primary: 35Q35 , 35Q55

Rights: Copyright © 2018 University of Illinois at Urbana-Champaign

Vol.62 • No. 1-4 • 2018
Back to Top