Illinois Journal of Mathematics

A characterization of the Macaulay dual generators for quadratic complete intersections

Tadahito Harima, Akihito Wachi, and Junzo Watanabe

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $F$ be a homogeneous polynomial in $n$ variables of degree $d$ over a field $K$. Let $A(F)$ be the associated Artinian graded $K$-algebra. If $B\subset A(F)$ is a subalgebra of $A(F)$ which is Gorenstein with the same socle degree as $A(F)$, we describe the Macaulay dual generator for $B$ in terms of $F$. Furthermore when $n=d$, we give necessary and sufficient conditions on the polynomial $F$ for $A(F)$ to be a complete intersection.

Article information

Source
Illinois J. Math., Volume 61, Number 3-4 (2017), 371-383.

Dates
Received: 22 March 2017
Revised: 23 May 2018
First available in Project Euclid: 22 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1534924831

Digital Object Identifier
doi:10.1215/ijm/1534924831

Mathematical Reviews number (MathSciNet)
MR3845725

Zentralblatt MATH identifier
06932508

Subjects
Primary: 13A02: Graded rings [See also 16W50] 13C11: Injective and flat modules and ideals 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05] 13M10: Polynomials

Citation

Harima, Tadahito; Wachi, Akihito; Watanabe, Junzo. A characterization of the Macaulay dual generators for quadratic complete intersections. Illinois J. Math. 61 (2017), no. 3-4, 371--383. doi:10.1215/ijm/1534924831. https://projecteuclid.org/euclid.ijm/1534924831


Export citation

References

  • I. M. Gelfand, M. M. Kaplanov and A. V. Zelevinski, Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994.
  • A. V. Geramita, Inverse systems of fat points: Waring's problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals, The curves seminar at Queen's, vol. X, Queen's Papers in Pure and Appl. Math., vol. 102, Queen's Univ., Kingston, ON, 1996, pp. 2–114.
  • R. Gondim, On higher Hessians and Lefschetz properties, J. Algebra 489 (2017), 241–263.
  • D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry; available at http://www.math.uiuc.edu/Macaulay2/.
  • T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi and J. Watanabe, The Lefschetz properties, Springer Lecture Notes, vol. 2080, Springer-Verlag, Berlin, 2013.
  • T. Harima, A. Wachi and J. Watanabe, The quadratic complete intersections associated with the action of the symmetric group, Illinois J. Math. 59 (2015), no. 1, 99–113.
  • T. Harima, A. Wachi and J. Watanabe, The resultants of binomial complete intersections, to appear in J. Commut. Algebra.
  • A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999.
  • T. Maeno and J. Watanabe, Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials, Illinois J. Math. 53 (2009), no. 2, 591–603.
  • C. McDaniel, The strong Lefschetz properties for coinvariant rings of finite reflection groups, J. Algebra 331 (2003), 99–126.
  • D. M. Meyer and L. Smith, Poincaré duality algebras, Macaulay's dual systems, and Steenrod operations, Cambridge Tracts in Mathematics, vol. 167, Cambridge University Press, Cambridge, 2005. viii+193 pp. ISBN: 978-0-521-85064-3; 0-521-85064-9, Cambridge University Press, Boston, 1994.
  • L. Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57–64.
  • J. Watanabe, A remark on the Hessian of homogeneous polynomials, The curves seminar at Queen's, vol. XIII, Queen's Papers in Pure and Appl. Math., vol. 119, Queen's Univ., ON, 2000, pp. 171–178.