Illinois Journal of Mathematics

Cohomology of ideals in elliptic surface singularities

Tomohiro Okuma

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We introduce the the normal reduction number of two-dimensional normal singularities and prove that elliptic singularity has normal reduction number two. We also prove that for a two-dimensional normal singularity which is not rational, it is Gorenstein and its maximal ideal is a $p_{g}$-ideal if and only if it is a maximally elliptic singularity of degree $1$.

Article information

Illinois J. Math., Volume 61, Number 3-4 (2017), 259-273.

Received: 12 October 2016
Revised: 13 January 2018
First available in Project Euclid: 22 August 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14J17: Singularities [See also 14B05, 14E15]
Secondary: 14B05: Singularities [See also 14E15, 14H20, 14J17, 32Sxx, 58Kxx]


Okuma, Tomohiro. Cohomology of ideals in elliptic surface singularities. Illinois J. Math. 61 (2017), no. 3-4, 259--273. doi:10.1215/ijm/1534924827.

Export citation


  • M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136.
  • K. Behnke and J. A. Christophersen, Hypersurface sections and obstructions (rational surface singularities), Compos. Math. 77 (1991), no. 3, 233–268.
  • S. D. Cutkosky, A new characterization of rational surface singularities, Invent. Math. 102 (1990), no. 1, 157–177.
  • S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative algebra (Fairfax, Va., 1979), Lecture Notes in Pure and Appl. Math., vol. 68, Dekker, New York, 1982, pp. 201–231.
  • S. Goto and K.-I. Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213.
  • C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), no. 2, 293–318.
  • C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006.
  • S. Itoh, Integral closures of ideals generated by regular sequences, J. Algebra 117 (1988), no. 2, 390–401.
  • M. Kato, Riemann-Roch theorem for strongly pseudoconvex manifolds of dimension $2$, Math. Ann. 222 (1976), no. 3, 243–250.
  • H. B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 1257–1295.
  • H. B. Laufer, On normal two-dimensional double point singularities, Israel J. Math. 31 (1978), no. 3–4, 315–334.
  • J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 195–279.
  • M. Morales, Calcul de quelques invariants des singularités de surface normale, Knots, braids and singularities (Plans-sur-Bex, 1982), Monogr. Enseign. Math., vol. 31, Enseignement Math., Geneva, 1983, pp. 191–203.
  • M. Morales, Clôture intégrale d'idéaux et anneaux gradués Cohen-Macaulay, Géométrie algébrique et applications, I (La Rábida, 1984), Travaux en Cours, vol. 22, Hermann, Paris, 1987, pp. 151–171.
  • A. Némethi, “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999), no. 1, 145–167.
  • T. Okuma, Numerical Gorenstein elliptic singularities, Math. Z. 249 (2005), no. 1, 31–62.
  • T. Okuma, K.-I. Watanabe and K.-I. Yoshida, Good ideals and $p_g$-ideals in two-dimensional normal singularities, Manuscripta Math. 150 (2016), no. 3–4, 499–520.
  • T. Okuma, K.-I. Watanabe and K.-I. Yoshida, Rees algebras and $p_g$-ideals in a two-dimensional normal local domain, Proc. Amer. Math. Soc. 145 (2017), no. 1, 39–47.
  • T. Okuma, K.-I. Watanabe and K.-I. Yoshida, A characterization of two-dimensional rational singularities via Core of ideals, J. Algebra 499 (2018), 450–468.
  • M. Reid, Chapters on algebraic surfaces, Complex algebraic geometry, IAS/Park City Math. Ser., vol. 3, Amer. Math. Soc., Providence, RI, 1997.
  • A. Röhr, A vanishing theorem for line bundles on resolutions of surface singularities, Abh. Math. Semin. Univ. Hambg. 65 (1995), 215–223.
  • J. D. Sally, Tangent cones at Gorenstein singularities, Compos. Math. 40 (1980), no. 2, 167–175.
  • M. Tomari, A $p_g$-formula and elliptic singularities, Publ. Res. Inst. Math. Sci. 21 (1985), no. 2, 297–354.
  • M. Tomari and K. Watanabe, Filtered rings, filtered blowing-ups and normal two-dimensional singularities with “star-shaped” resolution, Publ. Res. Inst. Math. Sci. 25 (1989), no. 5, 681–740.
  • P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454.
  • S. S. T. Yau, Gorenstein singularities with geometric genus equal to two, Amer. J. Math. 101 (1979), no. 4, 813–854.
  • S. S. T. Yau, Hypersurface weighted dual graphs of normal singularities of surfaces, Amer. J. Math. 101 (1979), no. 4, 761–812.
  • S. S. T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), no. 2, 269–329.