Illinois Journal of Mathematics

Abstract convolution function algebras over homogeneous spaces of compact groups

Arash Ghaani Farashahi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This paper presents a systematic study for structure of abstract Banach function $*$-algebras over homogeneous spaces of compact groups. Let $G$ be a compact group and $H$ be a closed subgroup of $G$. Let $\mu$ be the normalized $G$-invariant measure over the homogeneous space $G/H$ associated to the Weil’s formula and $1\leq p<\infty$. Then we introduce the notions of convolution and involution for the Banach function spaces $L^{p}(G/H,\mu)$.

Article information

Source
Illinois J. Math., Volume 59, Number 4 (2015), 1025-1042.

Dates
Received: 9 April 2016
Revised: 7 July 2016
First available in Project Euclid: 27 February 2017

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1488186019

Digital Object Identifier
doi:10.1215/ijm/1488186019

Mathematical Reviews number (MathSciNet)
MR3628299

Zentralblatt MATH identifier
1358.22001

Subjects
Primary: 22C05: Compact groups 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc. 43A20: $L^1$-algebras on groups, semigroups, etc. 43A77: Analysis on general compact groups 43A85: Analysis on homogeneous spaces 47A67: Representation theory

Citation

Ghaani Farashahi, Arash. Abstract convolution function algebras over homogeneous spaces of compact groups. Illinois J. Math. 59 (2015), no. 4, 1025--1042. doi:10.1215/ijm/1488186019. https://projecteuclid.org/euclid.ijm/1488186019


Export citation

References

  • A. Derighetti, On the multipliers of a quotient group, Bull. Sci. Math. (2) 107 (1983), no. 1, 3–23.
  • A. Derighetti, Convolution operators on groups, Lecture Notes of the Unione Matematica Italiana, vol. 11, Springer, Heidelberg, UMI, Bologna, 2011.
  • J. Dixmier, $C^{*}$-Algebras, North-Holland Publishing Company, Amsterdam, 1977.
  • H. G. Feichtinger, On a class of convolution algebras of functions, Ann. Inst. Fourier (Grenoble) 27 (1977), 135–162.
  • H. G. Feichtinger, Banach convolution algebras of functions II, Monatsh. Math. 87 (1979), no. 3, 181–207.
  • H. G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), no. 4, 269–289.
  • G. B. Folland, A course in abstract harmonic analysis, CRC Press, Boca Ratton, FL, 1995.
  • A. Ghaani Farashahi, Abstract non-commutative harmonic analysis of coherent state transforms, Ph.D. thesis, Ferdowsi University of Mashhad (FUM), Mashhad, 2012.
  • A. Ghaani Farashahi, Convolution and involution on function spaces of homogeneous spaces, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 4, 1109–1122.
  • A. Ghaani Farashahi, Abstract relative Fourier transforms over canonical homogeneous spaces of semi-direct product groups with Abelian normal factor, J. Korean Math. Soc. (2016). DOI:\doiurl10.4134/JKMS.j150610.
  • A. Ghaani Farashahi, Abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups, J. Aust. Math. Soc. 101 (2016), no. 2, 171–187.
  • A. Ghaani Farashahi, Abstract Plancherel (trace) formulas over homogeneous spaces of compact groups, Canad. Math. Bull. 60 (2017), 111–121.
  • E. Hewitt and K. A. Ross, Absrtact harmonic analysis, vol. 1, Springer-Verlag, New York, 1963.
  • E. Hewitt and K. A. Ross, Absrtact harmonic analysis, vol. 2, Springer-Verlag, Berlin, 1970.
  • V. Kisil, Relative convolutions. I. Properties and applications, Adv. Math. 147 (1999), no. 1, 35–73.
  • V. Kisil, Erlangen program at large: An overview, Advances in applied analysis, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2012, pp. 1–94.
  • V. Kisil, Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic actions of $SL_{2}(\mathbb{R})$, Imperial College Press, London, 2012.
  • V. Kisil, Operator covariant transform and local principle, J. Phys. A 45 (2012), no. 24, \bnumber244022.
  • V. Kisil, Calculus of operators: Covariant transform and relative convolutions, Banach J. Math. Anal. 8 (2014), no. 2, 156–184.
  • G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990.
  • H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups, 2nd ed., London Mathematical Society Monographs. New Series, vol. 22, The Clarendon Press, Oxford University Press, New York, 2000.