Illinois Journal of Mathematics

Riemannian almost CR manifolds with torsion

Giulia Dileo and Antonio Lotta

Full-text: Access by subscription

Abstract

We characterize and study Riemannian almost CR manifolds admitting characteristic connections, that is, metric connections with totally skew-symmetric torsion parallelizing the almost CR structure. Natural constructions are provided of new nontrivial examples. We study the influence of the curvature of the metric on the underlying almost CR structure. A global classification is obtained under flatness assumption of a characteristic connection, provided that the fundamental $2$-form of the structure is closed (quasi Sasakian condition).

Article information

Source
Illinois J. Math., Volume 58, Number 3 (2014), 807-846.

Dates
Received: 15 July 2014
Revised: 19 February 2015
First available in Project Euclid: 9 September 2015

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1441790391

Digital Object Identifier
doi:10.1215/ijm/1441790391

Mathematical Reviews number (MathSciNet)
MR3395964

Zentralblatt MATH identifier
1328.53036

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.) 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)
Secondary: 53B05: Linear and affine connections

Citation

Dileo, Giulia; Lotta, Antonio. Riemannian almost CR manifolds with torsion. Illinois J. Math. 58 (2014), no. 3, 807--846. doi:10.1215/ijm/1441790391. https://projecteuclid.org/euclid.ijm/1441790391


Export citation

References

  • J. F. Adams, P. D. Lax and R. S. Phillips, On matrices whose real linear combinations are non-singular, Proc. Amer. Math. Soc. 16 (1965), 318–322.
  • I. Agricola, The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), suppl., 5–84.
  • I. Agricola and T. Friedrich, A note on flat metric connections with antisymmetric torsion, Differential Geom. Appl. 28 (2010), no. 4, 480–487.
  • M. Ako, Fibred spaces with almost complex structures, Kodai Math. Semin. Rep. 24 (1972), 482–505.
  • Y. Au-yeung, On matrices whose nontrivial real linear combinations are nonsingular, Proc. Amer. Math. Soc. 29 (1971), 17–22.
  • A. Bejancu, Geometry of CR-submanifolds, Mathematics and Its Applications (East European Series), vol. 23, Reidel, Dordrecht, 1986.
  • D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1 (1967), 331–345.
  • D. E. Blair, Geometry of manifolds with structural group $\mathsf{U}(n)\times\mathsf{O}(s)$, J. Differential Geom. 4 (1976), 155–167.
  • D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progr. Math., vol. 203, Birkhäuser, Boston, 2002.
  • A. L. Besse, Einstein manifolds, Springer, Berlin, 1987.
  • M. Bordemann, M. Forger and H. Römer, Homogeneous Kähler manifolds: Paving the way towards new supersymmetric sigma models, Comm. Math. Phys. 102 (1986), no. 4, 605–617.
  • B. Cappelletti Montano, A. De Nicola and G. Dileo, The geometry of 3-quasi Sasakian manifolds, Internat. J. Math. 20 (2009), no. 9, 1081–1105.
  • N. Degirmenci and N. Özdemir, The construction of maximum independent set of matrices via Clifford algebras, Turkish J. Math. 31 (2007), no. 2, 193–205.
  • G. Dileo and A. Lotta, Generalized pseudohermitian manifolds, Forum Math. 24 (2012), no. 6, 1111–1160.
  • T. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), no. 2, 303–335.
  • R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1990.
  • G. Jensen, Einstein metrics on principal fibre bundles, J. Differential Geom. 8 (1973), 599–614.
  • V. F. Kirichenko, On homogeneous Riemannian spaces with an invariant structure tensor, Sov. Math., Dokl. 21 (1980), 734–737; translation from Dokl. Akad. Nauk SSSR 252 (1980), 291–293.
  • S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, Interscience Publishers, New York, 1963.
  • S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. II, Interscience Publishers, New York, 1969.
  • B. Korkmaz, Normality of complex contact manifolds, Rocky Mountain J. Math. 30 (2000), no. 4, 1343–1380.
  • O. Kowalski and M. Sekizawa, On the geometry of orthonormal frame bundles, Math. Nachr. 281 (2008), no. 12, 1799–1809.
  • A. Krüger, Homogeneous Cauchy–Riemann structures, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 18 (1991), no. 2, 193–212.
  • A. Lotta and M. Nacinovich, On a class of symmetric CR manifolds, Adv. Math. 191 (2005), no. 1, 114–146.
  • A. Lotta and M. Nacinovich, CR-admissible $\mathbb{Z}_2$-gradations and $\CR$-symmetries, Ann. Mat. Pura Appl. (4) 187 (2008), no. 2, 221–236.
  • Z. Olszak, Curvature properties of quasi-Sasakian manifolds, Tensor (N.S.) 38 (1982), 19–28.
  • C. Medori and M. Nacinovich, Levi–Tanaka algebras and homogeneous CR manifolds, Compos. Math. 109 (1997), no. 2, 195–250.
  • M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math. J. (2) 14 (1962), 135–145.
  • M. Okumura, Certain almost contact hypersurfaces in Euclidean spaces, Kodai Math. Semin. Rep. 16 (1964), 44–54.
  • P. Petersen, Riemannian geometry, Graduate Texts in Mathematics, vol. 171, Springer, New York, 1998.
  • K. Sakamoto and Y. Takemura, Curvature invariants of $\CR$-manifolds, Kodai Math. J. 4 (1981), 251–265.
  • N. Tanaka, On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1–82.
  • T. Takahashi, Sasakian $\varphi$-symmetric spaces, Tohoku Math. J. (2) 29 (1977), 91–113.
  • S. Tanno, Sasakian manifolds with constant $\varphi$-holomorphic sectional curvature, Tohoku Math. J. (2) 21 (1969), 501–507.
  • F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Mathematical Society Lecture Note Series, vol. 83, Cambridge University Press, Cambridge, 1983.
  • A. E. Tumanov, The geometry of $\CR$-manifolds, Several complex variables III, Encyclopaedia of Mathematical Sciences, vol. 9, Springer, Berlin, 1989. Translation by J. Peetre. Translation edited by G. M. Khenkin.
  • E. Vidal, On regular foliations, Ann. Inst. Fourier (Grenoble) 17 (1967), 129–133.
  • J. A. Wolf, On the geometry and classification of absolute parallelisms. I, J. Differential Geom. 6 (1972), 317–342.
  • W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), no. 3, 351–358.