Illinois Journal of Mathematics

Extension of plurisubharmonic functions in the Lelong class

Ozcan Yazici

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $X$ be an algebraic subvariety of $\mathbb{C}^{n}$ and $\overline{X}$ be its closure in $\mathbb{P}^{n}$. In their paper (J. Reine Angew. Math. 676 (2013), 33–49), Coman, Guedj and Zeriahi proved that any plurisubharmonic function with logarithmic growth on $X$ extends to a plurisubharmonic function with logarithmic growth on $\mathbb{C}^{n}$ when the germs $(\overline{X},a)$ in $\mathbb{P}^{n}$ are irreducible for all $a\in\overline{X}\setminus X$. In this paper we consider $X$ for which the germ $(\overline{X},a)$ is reducible for some $a\in\overline{X}\setminus X$ and we give a necessary and sufficient condition for $X$ so that any plurisubharmonic function with logarithmic growth on $X$ extends to a plurisubharmonic function with logarithmic growth on $\mathbb{C}^{n}$.

Article information

Source
Illinois J. Math., Volume 58, Number 1 (2014), 219-231.

Dates
First available in Project Euclid: 1 April 2015

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1427897175

Digital Object Identifier
doi:10.1215/ijm/1427897175

Mathematical Reviews number (MathSciNet)
MR3331848

Zentralblatt MATH identifier
1329.32018

Subjects
Primary: 32U05: Plurisubharmonic functions and generalizations [See also 31C10]
Secondary: 32C25: Analytic subsets and submanifolds 32Q15: Kähler manifolds 32Q28: Stein manifolds

Citation

Yazici, Ozcan. Extension of plurisubharmonic functions in the Lelong class. Illinois J. Math. 58 (2014), no. 1, 219--231. doi:10.1215/ijm/1427897175. https://projecteuclid.org/euclid.ijm/1427897175


Export citation

References

  • T. Bloom and N. Levenberg, Distribution of nodes on algebraic curves in $\mathbb C^n$, Ann. Inst. Fourier (Grenoble) 53 (2003), 1365–1385.
  • D. Coman, V. Guedj and A. Zeriahi, Extension of plurisubharmonic functions with growth control, J. Reine Angew. Math. 676 (2013), 33–49.
  • J. P. Demailly, Complex analytic and differential geometry; available at https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, version of June 21, 2012.
  • J. P. Demailly, Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. Fr. (N.S.) 19 (1985), 1–125.
  • J. E. Fornæss and R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), 47–72.
  • V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607–639.