Open Access
Spring 2014 Extension of plurisubharmonic functions in the Lelong class
Ozcan Yazici
Illinois J. Math. 58(1): 219-231 (Spring 2014). DOI: 10.1215/ijm/1427897175

Abstract

Let $X$ be an algebraic subvariety of $\mathbb{C}^{n}$ and $\overline{X}$ be its closure in $\mathbb{P}^{n}$. In their paper (J. Reine Angew. Math. 676 (2013), 33–49), Coman, Guedj and Zeriahi proved that any plurisubharmonic function with logarithmic growth on $X$ extends to a plurisubharmonic function with logarithmic growth on $\mathbb{C}^{n}$ when the germs $(\overline{X},a)$ in $\mathbb{P}^{n}$ are irreducible for all $a\in\overline{X}\setminus X$. In this paper we consider $X$ for which the germ $(\overline{X},a)$ is reducible for some $a\in\overline{X}\setminus X$ and we give a necessary and sufficient condition for $X$ so that any plurisubharmonic function with logarithmic growth on $X$ extends to a plurisubharmonic function with logarithmic growth on $\mathbb{C}^{n}$.

Citation

Download Citation

Ozcan Yazici. "Extension of plurisubharmonic functions in the Lelong class." Illinois J. Math. 58 (1) 219 - 231, Spring 2014. https://doi.org/10.1215/ijm/1427897175

Information

Published: Spring 2014
First available in Project Euclid: 1 April 2015

zbMATH: 1329.32018
MathSciNet: MR3331848
Digital Object Identifier: 10.1215/ijm/1427897175

Subjects:
Primary: 32U05
Secondary: 32C25 , 32Q15 , 32Q28

Rights: Copyright © 2014 University of Illinois at Urbana-Champaign

Vol.58 • No. 1 • Spring 2014
Back to Top