Illinois Journal of Mathematics

Markovian loop clusters on graphs

Yves Le Jan and Sophie Lemaire

Full-text: Open access

Abstract

We study the loop clusters induced by Poissonian ensembles of Markov loops on a finite or countable graph (Markov loops can be viewed as excursions of Markov chains with a random starting point, up to re-rooting). Poissonian ensembles are seen as a Poisson point process of loops indexed by ‘time’. The evolution in time of the loop clusters defines a coalescent process on the vertices of the graph. After a description of some general properties of the coalescent process, we address several aspects of the loop clusters defined by a simple random walk killed at a constant rate on three different graphs: the integer number line $\mathbb{Z}$, the integer lattice $\mathbb{Z}^{d}$ with $d\geq2$ and the complete graph. These examples show the relations between Poissonian ensembles of Markov loops and other models: renewal process, percolation and random graphs.

Article information

Source
Illinois J. Math., Volume 57, Number 2 (2013), 525-558.

Dates
First available in Project Euclid: 19 August 2014

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1408453593

Digital Object Identifier
doi:10.1215/ijm/1408453593

Mathematical Reviews number (MathSciNet)
MR3263044

Zentralblatt MATH identifier
1311.60015

Subjects
Primary: 60C05: Combinatorial probability
Secondary: 60J10: Markov chains (discrete-time Markov processes on discrete state spaces) 60G55: Point processes 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 05C40: Connectivity

Citation

Le Jan, Yves; Lemaire, Sophie. Markovian loop clusters on graphs. Illinois J. Math. 57 (2013), no. 2, 525--558. doi:10.1215/ijm/1408453593. https://projecteuclid.org/euclid.ijm/1408453593


Export citation

References

  • J. Bertoin, Subordinators: Examples and applications, Lectures on probability theory and statistics (Saint-Flour, 1997), Lecture Notes in Mathematics, vol. 1717, Springer, Berlin, 1999, pp. 1–91.
  • B. Bollobás, Random graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001.
  • J. Chang, Phase transition for loop covering probabilities, preprint, available at \arxivurlarXiv:1210.2520, 2012.
  • P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297.
  • G. F. Lawler, Defining SLE in multiply connected domains with the Brownian loop measure, preprint, available at \arxivurlarXiv:1108.4364, 2011.
  • G. F. Lawler and V. Limic, Random walk: A modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge University Press, Cambridge, 2010.
  • G. F. Lawler and J. A. Trujillo Ferreras, Random walk loop soup, Trans. Amer. Math. Soc. 359 (2007), no. 2, 767–787 (electronic).
  • G. F. Lawler and W. Werner, The Brownian loop soup, Probab. Theory Related Fields 128 (2004), no. 4, 565–588.
  • Y. Le Jan, Markov paths, loops and fields, Lecture Notes in Mathematics, vol. 2026, Springer, Heidelberg, 2011.
  • Y. Le Jan, Amas de lacets markoviens, C. R. Math. Acad. Sci. Paris 350 (2012), no. 13, 643–646.
  • J. Pitman, Combinatorial stochastic processes, Lecture Notes in Mathematics, vol. 1875, Springer, Berlin, 2006.
  • S. Sheffield and W. Werner, Conformal loop ensembles: The Markovian characterization and the loop-soup construction, Ann. of Math. 176 (2012), no. 3, 1827–1917.
  • K. Symanzik, Euclidean quantum field theory, Local quantum theory (R. Jost, ed.), Academic Press, New York, 1969, pp. 152–226.
  • W. Werner, SLEs as boundaries of clusters of Brownian loops, C. R. Math. Acad. Sci. Paris 337 (2003), no. 7, 481–486.
  • W. Werner, Percolation et modèle d'Ising, Cours Spécialisés [Specialized Courses], vol. 16, Société Mathématique de France, Paris, 2009.