Illinois Journal of Mathematics

On Abel summability of Jacobi polynomials series, the Watson kernel and applications

Calixto P. Calderón and Wilfredo O. Urbina

Full-text: Open access


In this paper, we return to the study of the Watson kernel for the Abel summability of Jacobi polynomial series. These estimates have been studied for over more than 40 years. The main innovations are in the techniques used to get the estimates that allow us to handle the cases $0<\alpha$ as well as $-1<\alpha<0$, with essentially the same methods. To that effect, we use an integral superposition of Natanson kernels, and the A. P. Calderón-Kurtz, B. Muckenhoupt $A_{p}$-weight theory. We consider also a generalization of a theorem due to Zygmund in the context of Borel measures. The proofs are different from the ones given in (Sobre la conjugación y sumabilidad de series de Jacobi (1971) Universidad de Buenos Aires, Studia Math. 49 (1974) 217–224, Colloq. Math. 30 (1974) 277–288 and Illinois J. Math. 41 (1997) 237–265). We will discuss in detail the Calderón–Zygmund decomposition for nonatomic Borel measures in $\mathbb{R}$. We prove that the Jacobi measure is doubling and following (Studia Math. 57 (1976) 297–306), we study the $A_{p}$ weight theory in the context of Abel summability of Jacobi expansions. We consider power weights of the form $(1-x)^{\overline{\alpha}}$, $(1+x)^{\overline{\beta}}$, $-1<{\overline{\alpha}}<0$, $-1<{\overline{\beta}}<0$. Finally, as an application of the weight theory we obtain $L^{p}$ estimates for the maximal operator of Abel summability of Jacobi function expansions for suitable values of $p$.

Article information

Illinois J. Math., Volume 57, Number 2 (2013), 343-371.

First available in Project Euclid: 19 August 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 42C10: Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
Secondary: 26A24: Differentiation (functions of one variable): general theory, generalized derivatives, mean-value theorems [See also 28A15]


Calderón, Calixto P.; Urbina, Wilfredo O. On Abel summability of Jacobi polynomials series, the Watson kernel and applications. Illinois J. Math. 57 (2013), no. 2, 343--371. doi:10.1215/ijm/1408453586.

Export citation


  • M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing, Dover, New York, 1966.
  • G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 1999.
  • R. Askey, Orthogonal polynomials and special functions, Regional Conf. in Applied Math., vol. 21, SIAM, Philadelphia, 1975.
  • W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 32, Stechert-Hafner, New York, 1964.
  • L. Cafarelli, Sobre la conjugación y sumabilidad de series de Jacobi, Ph.D. thesis, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Argentina, 1971.
  • L. Cafarelli and C. P. Calderón, On Abel summability of multiple Jacobi series, Colloq. Math. 30 (1974), 277–288.
  • A. P. Calderón, Inequalities for a maximal function relative to a metric, Studia Math. 57 (1976), 297–306.
  • C. P. Calderón and V. Vera de Serio, On Abel summability of Jacobi type series, Illinois J. Math. 41 (1997), no. 2, 237–265.
  • J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, Amer. Math. Soc., Providence, RI, 2001.
  • A. Edéryi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher trascendental functions III, Based on notes by H. Bateman, McGraw-Hill, New York, 1955.
  • G. Gasper, Positivity and convolution structure for Jacobi series, Ann. of Math. (2) 93 (1971), 112–118.
  • G. Gasper, Banach algebras for Jacobi series and positivity of a kernel, Ann. of Math. (2) 95 (1972), 261–280.
  • D. Jackson, Fourier series and orthogonal polynomials, Dover, New York, 2004. Reprint from the 1941 original.
  • N. N. Lebedev, Special functions and their applications, Dover, New York, 1972.
  • B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansion, Trans. Amer. Math. Soc. 139 (1969), 231–242.
  • B. Muckenhoupt and E. M. Stein, Classical expansions and their relations to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92.
  • A. Nowak and P. Sjögren, Calderón–Zygmund operators related to Jacobi expansions, J. Fourier Anal. Appl. 18 (2012), 717–749.
  • E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
  • G. Szegö, Orthogonal polynomials, Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, 1959.
  • Z. X. Wang and D. R. Guo, Special functions, World Scientific, Singapore, 1989.
  • G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1980.
  • A. Zygmund, Trigonometric series, vols. I, II, 2nd ed., Cambridge Univ. Press, Cambridge, 1959.