Illinois Journal of Mathematics

Some properties of Hölder surfaces in the Heisenberg group

Enrico Le Donne and Roger Züst

Full-text: Access by subscription

Abstract

It is a folk conjecture that for $\alpha>1/2$ there is no $\alpha$-Hölder surface in the subRiemannian Heisenberg group. Namely, it is expected that there is no embedding from an open subset of $\mathbb{R}^{2}$ into the Heisenberg group that is Hölder continuous of order strictly greater than $1/2$. The Heisenberg group here is equipped with its Carnot–Carathéodory distance. We show that, in the case that such a surface exists, it cannot be of essential bounded variation and it intersects some vertical line in at least a topological Cantor set.

Article information

Source
Illinois J. Math., Volume 57, Number 1 (2013), 229-249.

Dates
First available in Project Euclid: 23 June 2014

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1403534494

Digital Object Identifier
doi:10.1215/ijm/1403534494

Mathematical Reviews number (MathSciNet)
MR3224569

Zentralblatt MATH identifier
1294.53033

Subjects
Primary: 53C17: Sub-Riemannian geometry 49Q15: Geometric measure and integration theory, integral and normal currents [See also 28A75, 32C30, 58A25, 58C35] 28A75: Length, area, volume, other geometric measure theory [See also 26B15, 49Q15] 26A16: Lipschitz (Hölder) classes

Citation

Le Donne, Enrico; Züst, Roger. Some properties of Hölder surfaces in the Heisenberg group. Illinois J. Math. 57 (2013), no. 1, 229--249. doi:10.1215/ijm/1403534494. https://projecteuclid.org/euclid.ijm/1403534494


Export citation

References

  • L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80.
  • H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, Springer, New York, 1969.
  • D. Gale, The game of Hex and the Brouwer fixed-point theorem, Amer. Math. Monthly 86 (1979), 818–827.
  • M. Gromov, Carnot–Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323.
  • U. Lang, Local currents in metric spaces, J. Geom. Anal. 21 (2011), 683–742.
  • E. Outerelo and J. M. Ruiz, Mapping degree theory, Graduate Studies in Mathematics, vol. 108, Amer. Math. Soc., Providence, RI, 2009.
  • T. Rado and P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, vol. LXXV, Springer, Berlin, 1955.
  • L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251–282.
  • R. Züst, Currents in snowflaked metric spaces, Ph.D. thesis, ETH Zurich, 2011.
  • R. Züst, Integration of Hölder forms and currents in snowflake spaces, Calc. Var. Partial Differential Equations 40 (2011), 99–124.