Illinois Journal of Mathematics

On the Lefschetz and Hodge–Riemann theorems

Tien-Cuong Dinh and Viêt-Anh Nguyên

Full-text: Access by subscription

Abstract

We give an abstract version of the hard Lefschetz theorem, the Lefschetz decomposition and the Hodge–Riemann theorem for compact Kähler manifolds. Some examples are studied for compact symplectic Kähler manifolds.

Article information

Source
Illinois J. Math., Volume 57, Number 1 (2013), 121-144.

Dates
First available in Project Euclid: 23 June 2014

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1403534489

Digital Object Identifier
doi:10.1215/ijm/1403534489

Mathematical Reviews number (MathSciNet)
MR3224564

Zentralblatt MATH identifier
1302.32020

Subjects
Primary: 32Q15: Kähler manifolds 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture 58A14: Hodge theory [See also 14C30, 14Fxx, 32J25, 32S35]

Citation

Dinh, Tien-Cuong; Nguyên, Viêt-Anh. On the Lefschetz and Hodge–Riemann theorems. Illinois J. Math. 57 (2013), no. 1, 121--144. doi:10.1215/ijm/1403534489. https://projecteuclid.org/euclid.ijm/1403534489


Export citation

References

  • A. Beauville, Variétés Kählériennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782.
  • F. Bogomolov, On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR-Sb. 22 (1974), 580–583.
  • F.-A. Bogomolov, Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR 243 (1978), no. 5, 1101–1104 (in Russian).
  • B. Berndtsson and N. Sibony, The $\bar{\partial}$-equation on a positive current, Invent. Math. 147 (2002), no. 2, 371–428.
  • J. Bertin, J.-P. Demailly, L. Illusie and C. Peters, Introduction à la théorie de Hodge, Panoramas et Synthèses, vol. 3, Société Mathématique de France, Paris, 1996.
  • E. Cattani, Mixed Lefschetz theorems and Hodge–Riemann bilinear relations, Int. Math. Res. Not. 10 (2008), 1–20.
  • M. A. de Cataldo and L. Migliorini, The hard Lefschetz theorem and the topology of semismall maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 759–772.
  • J.-P. Demailly, Complex analytic and differential geometry, manuscript, Institut Fourier, first edition 1991; available at http://www-fourier.ujf-grenoble.fr/ demailly/books.html.
  • T.-C. Dinh, Tits alternative for automorphism groups of compact Kähler manifolds, Acta Math. Vietnam. 37 (2012), no. 4, 513–529.
  • T.-C. Dinh and V.-A. Nguyen, The mixed Hodge–Riemann bilinear relations for compact Kähler manifolds, Geom. Funct. Anal. 16 (2006), 838–849.
  • T.-C. Dinh and N. Sibony, Groupes commutatifs d'automorphismes d'une variété kählérienne compacte, Duke Math. J. 123 (2004), no. 2, 311–328.
  • I. Enoki, Compact Ricci-flat Kähler manifolds, Kähler metric and moduli spaces, Adv. Stud. Pure Math., vol. 18-II, Academic Press, Boston, MA, 1990, pp. 229–256.
  • A. Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 105–165.
  • R. Goodman and N.-R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009.
  • P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library, Wiley, New York, 1994. Reprint of the 1978 original.
  • M. Gromov, Convex sets and Kähler manifolds, Advances in Differential Geometry and Topology, World Sci. Publishing, Teaneck, NJ, 1990, pp. 1–38.
  • D. Huybrechts, Compact hyperkähler manifolds, Calabi–Yau manifolds and related geometries (Nordfjordeid, 2001), Universitext, Springer, Berlin, 2003, pp. 161–225.
  • J. Keum, K. Oguiso and D.-Q. Zhang, Conjecture of Tits type for complex varieties and theorem of Lie–Kolchin type for a cone, Math. Res. Lett. 16 (2009), no. 1, 133–148.
  • A. G. Khovanskii, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978), no. 1, 51–61 (in Russian).
  • A.-G. Khovanskii, The geometry of convex polyhedra and algebraic geometry, Uspehi Mat. Nauk. (Russian Math. Surveys) 34 (1979), no. 4, 160–161 (in Russian).
  • K. Oguiso, Bimeromorphic automorphism groups of non-projective hyperkähler manifolds–-A note inspired by C. T. McMullen, J. Differential Geom. 78 (2008), no. 1, 163–191.
  • B. Teissier, Du théorème de l'index de Hodge aux inégalités isopérimétriques, C. R. Acad. Sci. Paris Sér. A–B 288 (1979), no. 4, A287–A289.
  • B. Teissier, Variétés toriques et polytopes, Bourbaki Seminar 1980/81, Lecture Notes in Math., vol. 901, Springer, Berlin, 1981, pp. 71–84.
  • V. A. Timorin, Mixed Hodge–Riemann bilinear relations in a linear context, Funct. Anal. Appl. 32 (1998), no. 4, 268–272.
  • C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Société Mathématique de France, Paris, 2002.
  • R. O. Wells, Differential analysis on complex manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 65, Springer, New York, 1980.
  • H. Weyl, The classical groups. Their invariants and representations, fifteenth printing, Princeton Landmarks in Mathematics, Princeton Univ. Press, Princeton, NJ, 1997.
  • D.-Q. Zhang, A theorem of Tits type for compact Kähler manifolds, Invent. Math. 176 (2009), no. 3, 449–459.