Open Access
Winter 2012 Rigidity of gradient almost Ricci solitons
A. Barros, R. Batista, E. Ribeiro Jr.
Illinois J. Math. 56(4): 1267-1279 (Winter 2012). DOI: 10.1215/ijm/1399395831

Abstract

In this paper, we show that either, a Euclidean space $\mathbb{R}^{n}$, or a standard sphere $\mathbb{S}^{n}$, is the unique manifold with nonnegative scalar curvature which carries a structure of a gradient almost Ricci soliton, provided this gradient is a non trivial conformal vector field. Moreover, in the spherical case the field is given by the first eigenfunction of the Laplacian. Finally, we shall show that a compact locally conformally flat almost Ricci soliton is isometric to Euclidean sphere $\mathbb{S}^{n}$ provided an integral condition holds.

Citation

Download Citation

A. Barros. R. Batista. E. Ribeiro Jr.. "Rigidity of gradient almost Ricci solitons." Illinois J. Math. 56 (4) 1267 - 1279, Winter 2012. https://doi.org/10.1215/ijm/1399395831

Information

Published: Winter 2012
First available in Project Euclid: 6 May 2014

zbMATH: 1290.53053
MathSciNet: MR3231482
Digital Object Identifier: 10.1215/ijm/1399395831

Subjects:
Primary: 53C20 , 53C21 , 53C25
Secondary: 53C65

Rights: Copyright © 2012 University of Illinois at Urbana-Champaign

Vol.56 • No. 4 • Winter 2012
Back to Top