Illinois Journal of Mathematics

A refinement of a congruence result by van Hamme and Mortenson

Zhi-Wei Sun

Full-text: Open access

Abstract

Let $p$ be an odd prime. In 2008, E. Mortenson proved van Hamme’s following conjecture:

\[\sum_{k=0}^{(p-1)/2}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}\equiv(-1)^{(p-1)/2}p\ \bigl(\operatorname{mod}p^{3}\bigr).\]

In this paper, we show further that

\begin{eqnarray*}\sum_{k=0}^{p-1}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}&\equiv&\sum_{k=0}^{(p-1)/2}(4k+1)\Bigl({\matrix{-1/2\\k}}\Bigr)^{3}\\[-2pt]&\equiv&(-1)^{(p-1)/2}p+p^{3}E_{p-3}\ \bigl(\operatorname{mod}p^{4}\bigr),\end{eqnarray*}

where $E_{0},E_{1},E_{2},\ldots$ are Euler numbers. We also prove that if $p>3$ then

\begin{eqnarray*}&&\sum_{k=0}^{(p-1)/2}\frac{20k+3}{(-2^{10})^{k}}\Bigl({\matrix{4k\\k,k,k,k}}\Bigr)\\&&\quad \equiv(-1)^{(p-1)/2}p\bigl(2^{p-1}+2-\bigl(2^{p-1}-1\bigr)^{2}\bigr)\ \bigl(\operatorname{mod}p^{4}\bigr).\end{eqnarray*}

Article information

Source
Illinois J. Math., Volume 56, Number 3 (2012), 967-979.

Dates
First available in Project Euclid: 31 January 2014

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1391178558

Digital Object Identifier
doi:10.1215/ijm/1391178558

Mathematical Reviews number (MathSciNet)
MR3161361

Zentralblatt MATH identifier
1292.11040

Subjects
Primary: 11B65: Binomial coefficients; factorials; $q$-identities [See also 05A10, 05A30]
Secondary: 05A10: Factorials, binomial coefficients, combinatorial functions [See also 11B65, 33Cxx] 11A07: Congruences; primitive roots; residue systems 11B68: Bernoulli and Euler numbers and polynomials

Citation

Sun, Zhi-Wei. A refinement of a congruence result by van Hamme and Mortenson. Illinois J. Math. 56 (2012), no. 3, 967--979. doi:10.1215/ijm/1391178558. https://projecteuclid.org/euclid.ijm/1391178558


Export citation

References

  • T. Amdeberhan and D. Zeilberger, Hypergeometric series acceleration via the WZ method, Electron. J. Combin. 4 (1997) no. 2, #R3.
  • N. D. Baruah and B. C. Berndt, Eisenstein series and Ramanujan-type series for $1/\pi$, Ramanujan J. 23 (2010), 17–44.
  • N. D. Baruah, B. C. Berndt and H. H. Chan, Ramanujan's series for $1/\pi$: A survey, Amer. Math. Monthly 116 (2009), 567–587.
  • B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer, New York, 1994.
  • S. B. Ekhad and D. Zeilberger, A WZ proof of Ramanujan's formula for $\pi$, Geometry, analysis, and mechanics (J. M. Rassias, ed.), World Sci. Publ., Singapore, 1994, pp. 107–108.
  • E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. (2) 39 (1938), 350–360.
  • L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249 (2011), 405–418.
  • F. Morley, Note on the congruence $2^{4n}\equiv(-1)^n(2n)!/(n!)^2$, where $2n+1$ is a prime, Ann. of Math. 9 (1895), 168–170.
  • E. Mortenson, A $p$-adic supercongruence conjecture of van Hamme, Proc. Amer. Math. Soc. 136 (2008), 4321–4328.
  • M. Petkovšek, H. S. Wilf and D. Zeilberger, $A=B$, A K Peters, Wellesley, 1996.
  • S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Math. (Oxford) (2) 45 (1914), 350–372.
  • Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc. 139 (2011), 1915–1929.
  • Z. W. Sun, On congruences related to central binomial coefficients, J. Number Theory 131 (2011), 2219–2238.
  • Z. W. Sun, Supper congruences and Euler numbers, Sci. China Math. 54 (2011), 2509–2535.
  • L. van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, $p$-adic functional analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math., vol. 192, Dekker, New York, 1997, pp. 223–236.
  • J. Wolstenholme, On certain properties of prime numbers, Quart. J. Appl. Math. 5 (1862), 35–39.
  • D. Zeilberger, Closed form (pun intended!), Contemp. Math. 143 (1993), 579–607.
  • L. L. Zhao, H. Pan and Z. W. Sun, Some congruences for the second-order Catalan numbers, Proc. Amer. Math. Soc. 138 (2010), 37–46.
  • W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009), 1848–1857.