Illinois Journal of Mathematics

On $L^{p}$-contractivity of Laguerre semigroups

Adam Nowak and Krzysztof Stempak

Full-text: Open access

Abstract

We study several Laguerre semigroups appearing in the literature and find sharp ranges of type parameters for which these semigroups are contractive on all $L^{p}$ spaces, $1\le p\le\infty$. We also answer a similar question for Bessel semigroups, which in a sense are closely related to the Laguerre semigroups. A bit surprisingly, in some cases the ranges turn out to be disconnected sets.

Article information

Source
Illinois J. Math., Volume 56, Number 2 (2012), 433-452.

Dates
First available in Project Euclid: 22 November 2013

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1385129958

Digital Object Identifier
doi:10.1215/ijm/1385129958

Mathematical Reviews number (MathSciNet)
MR3161334

Zentralblatt MATH identifier
1279.47062

Subjects
Primary: 42C10: Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
Secondary: 47D03: Groups and semigroups of linear operators {For nonlinear operators, see 47H20; see also 20M20} 47G10: Integral operators [See also 45P05]

Citation

Nowak, Adam; Stempak, Krzysztof. On $L^{p}$-contractivity of Laguerre semigroups. Illinois J. Math. 56 (2012), no. 2, 433--452. doi:10.1215/ijm/1385129958. https://projecteuclid.org/euclid.ijm/1385129958


Export citation

References

  • D. Bakry, Functional inequalities for Markov semigroups, Probability measures on groups: Recent directions and trends, Tata Inst. Fund. Res., Mumbai, 2006, pp. 91–147.
  • J. J. Betancor and K. Stempak, On Hankel conjugate functions, Studia Sci. Math. Hungar. 41 (2004), 59–91.
  • J. J. Betancor, E. Harboure, A. Nowak and B. Viviani, Mapping properties of fundamental operators in harmonic analysis related to Bessel operators, Studia Math. 197 (2010), 101–140.
  • A. Chicco Ruiz and E. Harboure, Weighted norm inequalities for heat-diffusion Laguerre's semigroups, Math. Z. 257 (2007), 329–354.
  • L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, Dirichlet forms, Varenna 1992, Lecture Notes in Math., vol. 1563, Springer, Berlin, 1993.
  • A. Korzeniowski and D. W. Stroock, An example in the theory of hypercontractive semigroups, Proc. Amer. Math. Soc. 94 (1985), 87–90.
  • A. Korzeniowski, On logarithmic Sobolev constant for diffusion semigroup, J. Funct. Anal. 71 (1987), 363–370.
  • N. N. Lebedev, Special functions and their applications, Dover, New York, 1972.
  • R. Macías, C. Segovia and J. L. Torrea, Heat-diffusion maximal operators for Laguerre semigroups with negative parameters, J. Funct. Anal. 229 (2005), 300–316.
  • R. Macías, C. Segovia and J. L. Torrea, Weighted norm estimates for the maximal operator of the Laguerre functions heat diffusion semigroup, Studia Math. 172 (2006), 149–167.
  • A. Nowak, Heat-diffusion and Poisson integrals for Laguerre and special Hermite expansions on weighted $L^p$ spaces, Studia Math. 158 (2003), 239–268.
  • A. Nowak, On Riesz transforms for Laguerre expansions, J. Funct. Anal. 215 (2004), 217–240.
  • A. Nowak and P. Sjögren, Weak type $(1,1)$ estimates for maximal operators associated with various multi-dimensional systems of Laguerre functions, Indiana Univ. Math. J. 56 (2007), 417–436.
  • A. Nowak and P. Sjögren, The multi-dimensional pencil phenomenon for Laguerre heat-diffusion maximal operators, Math. Ann. 344 (2009), 213–248.
  • A. Nowak and K. Stempak, $L^2$-theory of Riesz transforms for orthogonal expansions, J. Fourier Anal. Appl. 12 (2006), 675–711.
  • A. Nowak and K. Stempak, Riesz transforms and conjugacy for Laguerre function expansions of Hermite type, J. Funct. Anal. 244 (2007), 399–443.
  • A. Nowak and K. Stempak, Riesz transforms for multi-dimensional Laguerre function expansions, Adv. Math. 215 (2007), 642–678.
  • A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and series, vol. 2, Special Functions, Gordon & Breach, New York, 1986.
  • M. Reed and B. Simon, Methods of modern mathematical physics, vol. 2, Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
  • E. M. Stein, Topics in harmonic analysis related to Littlewood–Paley theory, Princeton University Press, Princeton, 1971.
  • K. Stempak, Heat-diffusion and Poisson integrals for Laguerre expansions, Tôhoku Math. J. 46 (1994), 83–104.