Illinois Journal of Mathematics

Every central simple algebra is Brauer equivalent to a Hopf Schur algebra

Ehud Meir

Full-text: Open access


We show that every central simple algebra $A$ over a field $k$ is Brauer equivalent to a quotient of a finite dimensional Hopf algebra over the same field. This shows that the natural generalization of the Schur group for Hopf algebras (which we call the Hopf Schur group) is in fact the entire Brauer group of $k$. If the characteristic of the field is zero, or if the algebra has a Galois splitting field with certain properties, we can take this Hopf algebra to be semisimple. We also show that if $F$ is any finite separable extension of $k$, then $F$ is a quotient of a finite dimensional commutative semisimple and cosemisimple Hopf algebra over $k$.

Article information

Illinois J. Math., Volume 56, Number 2 (2012), 423-432.

First available in Project Euclid: 22 November 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 16K50: Brauer groups [See also 12G05, 14F22] 16T20: Ring-theoretic aspects of quantum groups [See also 17B37, 20G42, 81R50]


Meir, Ehud. Every central simple algebra is Brauer equivalent to a Hopf Schur algebra. Illinois J. Math. 56 (2012), no. 2, 423--432. doi:10.1215/ijm/1385129957.

Export citation


  • E. Aljadeff, J. Cuadra, S. Gelaki and E. Meir, On the Hopf Schur group of a field, J. Algebra 319(12) (2008), 5165–5177; available at \arxivurlarXiv:0708.1943v1.
  • E. Aljadeff and J. Sonn, On the projective Schur group of a field, J. Algebra 178(2) (1995), 530–540.
  • N. Andruskiewitsch and H. J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$, J. Algebra 209(2) (1998), 658–691.
  • M. Beattie, S. Dascalescu and L. Grunenfelder, On the number of types of finite dimensional Hopf algebras, Invent. Math. 136 (1999), 1–7.
  • S. Caenepeel, S. Dascalescu, and L. Lebruyn, Forms of pointed Hopf algebras, Manuscripta Math. 100 (1999), 35–53.
  • B. Fein and M. Schacher, Brauer groups of rational function fields, Groupe de Brauer, Lecture Notes in Mathematics, vol. 844, Springer, New York, 1981.
  • S. Gelaki, Pointed Hopf algebras and Kaplansky's 10th conjecture, J. Algebra 209(2) (1998), 635–657.
  • P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2006.
  • I. M. Issacs, Character theory of finite groups, Dover, New York, 1994.
  • G. J. Janusz, The Schur group of an algebraic number field, Ann. of Math. (2) 103(2) (1976), 253–281.
  • C. Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer, Berlin, 1995.
  • B. Pareigis, Forms of Hopf algebras and Galois theory, Banach Center Publ. 26 (1990), 75–93.
  • D. Parker, Forms of coalgebras and Hopf algebras, J. Algebra, 239(1) (2001), 1–34.
  • D. Radford, E. Taft and R. Wilson, Forms of certain Hopf algebras, Manuscripta Math. 17 (1975), 333–338.
  • D. Stefan, The set of types of $n$-dimensional semisimple and cosemisimple Hopf algebras is finite, J. Algebra 193 (1997), 571–580.
  • T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Mathematics, vol. 397, Springer, Berlin, 1970.