Illinois Journal of Mathematics

Bounds for sectional genera of varieties invariant under Pfaff fields

Maurício Corrêa Jr. and Marcos Jardim

Full-text: Open access

Abstract

We establish an upper bound for the sectional genus of varieties which are invariant under Pfaff fields on projective spaces.

Article information

Source
Illinois J. Math., Volume 56, Number 2 (2012), 343-352.

Dates
First available in Project Euclid: 22 November 2013

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1385129951

Digital Object Identifier
doi:10.1215/ijm/1385129951

Mathematical Reviews number (MathSciNet)
MR3161327

Zentralblatt MATH identifier
1281.32027

Subjects
Primary: 32S65: Singularities of holomorphic vector fields and foliations
Secondary: 37F75: Holomorphic foliations and vector fields [See also 32M25, 32S65, 34Mxx] 58A17: Pfaffian systems

Citation

Corrêa Jr., Maurício; Jardim, Marcos. Bounds for sectional genera of varieties invariant under Pfaff fields. Illinois J. Math. 56 (2012), no. 2, 343--352. doi:10.1215/ijm/1385129951. https://projecteuclid.org/euclid.ijm/1385129951


Export citation

References

  • V. Ancona and G. Ottaviani, Stability of special instanton bundles on $\mathbb{P}^{2n+1}$, Trans. Amer. Math. Soc. 341 (1994), 677–693.
  • M. Brunella and L. G. Mendes, Bounding the degree of solutions to Pfaff equations, Publ. Mat. 44 (2000), 593–604.
  • A. Campillo, M. M. Carnicer and J. García de la Fuente, Invariant curves by vector fields on algebraic varieties, J. London Math. Soc. (2) 62 (2000), 56–70.
  • M. Carnicer, The Poincaré problem in the non-dicritical case, Ann. of Math. (2) 140 (1994), 289–294.
  • V. Cavalier and D. Lehmann, On the Poincaré inequality for one-dimensional foliations, Compos. Math. 142 (2006), 529–540.
  • D. Cerveau and A. Lins Neto, Holomorphic foliations in $\mathbb{P}_{\mathbb{C}}^2$ having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (1991), 883–903.
  • J. D. A. S. Cruz and E. Esteves, Bounding the regularity of subschemes invariant under Pfaff fields on projective spaces, Comment. Math. Helv. 86 (2011), 947–965.
  • E. Esteves and S. Kleiman, Bounds on leaves of one-dimensional foliations, Bull. Braz. Mat. Soc. (N.S.) 34 (2003), 145–169.
  • R. Fahlaoui, Stabilité du fibre tangent des surfaces de del Pezzo, Math. Ann. 283 (1989), 171–176.
  • Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties I, Comm. Algebra 32 (2004), 1069–1100.
  • J. Garcia, Multiplicity of a foliation on projective spaces along an integral curve, Rev. Mat. Univ. Complut. Madrid 6 (1993), 207–217.
  • J. M. Hwang, Stability of tangent bundles of low dimensional Fano manifolds with Picard number 1, Math. Ann. 312 (1998), 599–606.
  • J. P. Jouanolou, Equations de Pfaff algébriques, Lecture Notes in Mathematics, vol. 708, Springer, Berlin, 1979.
  • S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton Univ. Press, Princeton, NJ, 1987.
  • E. Kunz, Holomorphe Differentialformen auf algebraischen Varietaten mit Singularitaten, I, Manuscripta Math. 25 (1975), 91–108.
  • A. Lins Neto, Some examples for Poincaré and Painlevé problem, Ann. Sci. École Norm. Sup. (4) 35 (2002), 231–266.
  • J. Lipman, Dualizing sheaves, differentials and residues on algebraic varieties, Astérisque, vol. 117, Soc. Math. France, 1984.
  • A. M. Nadel, The boundedness of degree of Fano varieties with Picard number one, J. Amer. Math. Soc. 4 (1991), 681–692.
  • O. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces, Birkhauser, Boston, 1980.
  • P. Painlevé, Sur les intégrales algébrique des équations differentielles du premier ordre and Mémoire sur les équations différentielles du premier ordre, Oeuvres de Paul Painlevé; Tome II, Éditions du Centre National de la Recherche Scientifique, 15, quai Anatole-France, 75700, Paris, 1974.
  • J. V. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), 217–226.
  • T. Peternell and A. Wisniewski, On stability of tangent bundles of Fano manifolds with $b_2 = 1$, J. Algebraic Geom. 4 (1995), 363–384.
  • H. Poincaré, Sur l'integration algébric des équations différentiales du primier ordre et du premier degré I and II, Rend. Circ. Mat. Palermo 5 (1891), 161–191; 11 (1897), 193–239.
  • M. G. Soares, The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. Math. 128 (1997), 495–500.
  • A. Steffens, On the stability of the tangent bundle of Fano manifolds, Math. Ann. 304 (1996), 635–643.
  • S. Subramanian, Stability of the tangent bundle and existence of a Kähler–Einstein metric, Math. Ann. 291 (1991), 573–577.
  • H. Tsuji, Stability of tangent bundles of minimal algebraic varieties, Topology 27 (1988), 429–442.
  • A. G. Zamora, Foliations in algebraic surfaces having a rational first integral, Publ. Mat. 41 (1997), 357–373.