Illinois Journal of Mathematics

The Bergman projection in $L^{p}$ for domains with minimal smoothness

Loredana Lanzani and Elias M. Stein

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $D\subset\mathbb{C}^{n}$ be a bounded, strongly Levi-pseudoconvex domain with minimally smooth boundary. We prove $L^{p}(D)$-regularity for the Bergman projection $B$, and for the operator $|B|$ whose kernel is the absolute value of the Bergman kernel with $p$ in the range $(1,+\infty)$. As an application, we show that the space of holomorphic functions in a neighborhood of $\overline{D}$ is dense in $\vartheta L^{p}(D)$.

Article information

Illinois J. Math. Volume 56, Number 1 (2012), 127-154.

First available in Project Euclid: 27 September 2013

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32A 42B 31B


Lanzani, Loredana; Stein, Elias M. The Bergman projection in $L^{p}$ for domains with minimal smoothness. Illinois J. Math. 56 (2012), no. 1, 127--154.

Export citation


  • D. E. Barrett, Irregularity of the Bergman projection on a smooth bounded domain, Ann. of Math. (2) 119 (1984), 431–436.
  • D. E. Barrett, Behavior of the Bergman projection on the Diederich–Fornæ ss worm, Acta Math. 168 (1992), 1–10.
  • D. Bekollé and A. Bonami, Inegalites a poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Ser. A–B 286 (1978), A775–A778.
  • Charpentier, P. and Y. Dupain, Estimates for the Bergman and Szegő projections for pseudoconvex domains of finite type with locally diagonalizable Levi forms, Publ. Mat. 50 (2006), 413–446.
  • D. Barrett and L. Lanzani, The Leray transform on weighted boundary spaces for convex Reinhardt domains, J. Funct. Anal. 257, (2009), 2780–2819.
  • A. Bonami and N. Lohoué, Projecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo-convexes et estimations $L^p$, Compos. Math. 46 (1982), 159–226.
  • S.-C. Chen and M.-C. Shaw, Partial differential equations in several complex variables, Amer. Math. Soc., Providence, RI, 2001.
  • D. Ehsani and I. Lieb, $L^p$-estimates for the Bergman projection on strictly pseudoconvex non-smooth domains, Math. Nachr. 281 (2008), 916–929.
  • C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65.
  • G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy–Riemann complex, Ann. Math. Studies 75, Princeton Univ. Press, Princeton, NJ, 1972.
  • T. Hansson, On Hardy spaces in complex ellipsoids, Ann. Inst. Fourier (Grenoble) 49 (1999), 1477–1501.
  • S. Krantz, Function theory of several complex variables, 2nd ed., Amer. Math. Soc., Providence, RI, 2001.
  • S. Krantz and M. Peloso, The Bergman kernel and projection on non-smooth worm domains, Houston J. Math. 34 (2008), 873–950.
  • N. Kerzman and E. M. Stein, The Szegő kernel in terms of Cauchy–Fantappié kernels, Duke Math. J. 45 (1978), 197–224.
  • E. Ligocka, The Hölder continuity of the Bergman projection and proper holomorphic mappings, Studia Math. 80 (1984), 89–107.
  • L. Lanzani and E. M. Stein, Szegő and Bergman projections on non-smooth planar domains, J. Geom. Anal. 14 (2004), 63–86.
  • L. Lanzani and E. M. Stein, Cauchy-type integrals in several complex variables, Bull. Math. Sci. 3 (2013), 241–285.
  • J. McNeal, Boundary behavior of the Bergman kernel function in $\mathbb C^2$, Duke Math. J. 58 (1989), 499–512.
  • J. McNeal, Estimates on the Bergman kernel of convex domains, Adv. in Math. 109 (1994), 108–139.
  • J. McNeal and E. M. Stein, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J. 73 (1994), 177–199.
  • A. Nagel, J.-P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegő kernels in $\mathbb C^2$, Ann. of Math. (2) 129 (1989), 113–149.
  • D. Phong and E. M. Stein, Estimates for the Bergman and Szegő projections on strongly pseudoconvex domains, Duke Math. J. 44 (1977), 695–704.
  • M. Range, Holomorphic functions and integral representations in several complex variables, Springer, Berlin, 1986.
  • Y. Zeytuncu, $L^p$-regularity of weighted Bergman projections, Trans. Amer. Math. Soc. 365 (2013), 2959–2976.