Illinois Journal of Mathematics

Compact actions, retract theory and prime ideals

Raza Lahiani and Carine Molitor-Braun

Full-text: Open access

Abstract

Let $N$ be a connected, simply connected, nilpotent Lie group and let $K$ be a compact subgroup of the automorphism group of $N$. We study the density of Schwartz functions in the kernels of $K$-orbits and characterize $K$-prime ideals. For this purpose a retract theory for $K$-actions has to be established.

Article information

Source
Illinois J. Math., Volume 55, Number 3 (2011), 1235-1266.

Dates
First available in Project Euclid: 29 May 2013

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1369841804

Digital Object Identifier
doi:10.1215/ijm/1369841804

Mathematical Reviews number (MathSciNet)
MR3069303

Zentralblatt MATH identifier
1273.22011

Subjects
Primary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 22E27: Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.) 43A20: $L^1$-algebras on groups, semigroups, etc.

Citation

Lahiani, Raza; Molitor-Braun, Carine. Compact actions, retract theory and prime ideals. Illinois J. Math. 55 (2011), no. 3, 1235--1266. doi:10.1215/ijm/1369841804. https://projecteuclid.org/euclid.ijm/1369841804


Export citation

References

  • J. Andèle, Noyaux d'opérateurs sur les groupes de Lie exponentiels, Thèse, Université de Metz, 1997.
  • C. Benson, J. Jenkins and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc. 321 (1990), 85–116.
  • J. Boidol, H. Leptin, J. Schürman and D. Vahle, ume primitiver Ideale von Gruppenalgebren, Math. Ann. 236 (1978), 1–13.
  • L. Corwin and P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I: Basic theory and examples, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990.
  • B. Currey, On the dual of an exponential solvable Lie group, Trans. Amer. Math. Soc. 309 (1988), 295–307.
  • V. V. Gorbatsevich, A. L. Onihchik and E. B. Vinberg, Foundations of Lie theory and Lie transformation groups, Springer, Berlin, 1997.
  • R. Howe, On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pacific J. Math. 73 (1977), 329–363.
  • R. Lahiani and C. Molitor-Braun, A smooth family of intertwining operators, J. Math. Soc. Japan 63 (2011), 321–361.
  • H. Leptin, Ideal theory in group algebras of locally compact groups, Invent. Math. 31 (1976), 259–278.
  • G. Lion, Intégrales d'entrelacement sur des groupes de Lie nilpotents et indices de Maslov, Lecture Notes in Math., vol. 587, Springer, Berlin, 1977, pp. 160–176.
  • R. L. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures Appl. 59 (1980), 337–374.
  • J. Ludwig, Irreducible representations of exponential solvable Lie groups and operators with smooth kernels, J. Reine Angew. Math. 339 (1983), 1–26.
  • J. Ludwig, On primary ideals in the group algebra of a nilpotent Lie group, Math. Ann. 262 (1983), 287–304.
  • J. Ludwig, Minimal $C^*$-dense ideals and algebraically irreducible representations of the Schwartz-algebra of a nilpotent Lie group, Harmonic Analysis, Lecture Notes in Math., vol. 1359, Springer, Berlin, 1987, pp. 209–217.
  • J. Ludwig and C. Molitor-Braun, Exponential actions, orbits and their kernels, Bull. Austral. Math. Soc. 57 (1998), 497–513.
  • J. Ludwig and C. Molitor-Braun, Représentations irréductibles bornées des groupes de Lie exponentiels, Canad. J. Math. 53 (2001), 944–978.
  • J. Ludwig, C. Molitor-Braun and L. Scuto, On Fourier's inversion theorem in the context of nilpotent Lie groups, Acta Sci. Math. 73 (2007), 547–591.
  • J. Ludwig and H. Zahir, On the nilpotent *-Fourier transform, Lett. Math. Phys. 30 (1994), 23–34.
  • N. V. Pedersen, Geometric quantization and the universal enveloping algebra of a nilpotent Lie group, Trans. Amer. Math. Soc. 315 (1989), 511–563.
  • D. Poguntke, Über das Synthese-Problem für nilpotente Liesche Gruppen, Math. Ann. 269 (1984), 431–467.
  • D. Poguntke, Spectral synthesis of orbits of compact groups, Miniconferences on harmonic analysis and operator algebras (Canberra/Aust. 1987), Proc. Cent. Math. Anal. Aust. Natl. Univ., vol. 16, Austral. Nat. Univ., Canberra, 1988, pp. 247–261.
  • L. Schwartz, Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, no. IX–X. Hermann, Paris, 1966. Nouveau tirage 1973.