Illinois Journal of Mathematics

Condenser energy under holomorphic motions

Stamatis Pouliasis

Full-text: Open access

Abstract

We prove that the condenser equilibrium energy is a superharmonic function when one of the plates of a condenser moves under a holomorphic motion and we characterize the cases where harmonicity occurs by showing that this happens if and only if the equilibrium measure on the moved plate is invariant under the holomorphic motion and the equilibrium measure on the fixed plate is unaffected. Also, in many cases, we show that harmonicity of the above function occurs only when the holomorphic motion is related with the level sets of the equilibrium potential of the condenser. In the case where the holomorphic motion is a dilation, we prove that harmonicity occurs if and only if the condenser is essentially an annulus with center at the origin.

Article information

Source
Illinois J. Math., Volume 55, Number 3 (2011), 1119-1134.

Dates
First available in Project Euclid: 29 May 2013

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1369841799

Digital Object Identifier
doi:10.1215/ijm/1369841799

Mathematical Reviews number (MathSciNet)
MR3069298

Zentralblatt MATH identifier
1273.31001

Subjects
Primary: 31A15: Potentials and capacity, harmonic measure, extremal length [See also 30C85]
Secondary: 31A05: Harmonic, subharmonic, superharmonic functions 30C85: Capacity and harmonic measure in the complex plane [See also 31A15] 37F99: None of the above, but in this section

Citation

Pouliasis, Stamatis. Condenser energy under holomorphic motions. Illinois J. Math. 55 (2011), no. 3, 1119--1134. doi:10.1215/ijm/1369841799. https://projecteuclid.org/euclid.ijm/1369841799


Export citation

References

  • D. H. Armitage and S. J. Gardiner, Classical potential theory, Springer Monographs in Mathematics, Springer, London, 2001.
  • K. Astala and G. J. Martin, Holomorphic motions, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 27–40.
  • S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, 2nd ed., Springer-Verlag, New York, 2001.
  • T. Bagby, The modulus of a plane condenser, J. Math. Mech. 17 (1967), 315–329.
  • D. Betsakos, On the equilibrium measure and the capacity of certain condensers, Illinois J. Math. 44 (2000), no. 3, 681–689.
  • D. Betsakos, Elliptic, hyperbolic, and condenser capacity; geometric estimates for elliptic capacity, J. Anal. Math. 96 (2005), 37–55.
  • C. J. Earle and S. Mitra, Variation of moduli under holomorphic motions, Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 39–67.
  • V. N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable (Russian), Uspekhi Mat. Nauk 49 (1994), no. 1(295), 3–76; translation in Russian Math. Surveys 49 (1994), no. 1, 1–79.
  • V. N. Dubinin, Generalized condensers and the asymptotics of their capacities under a degeneration of some plates (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, 38–51, 198-199; translation in J. Math. Sci. (N. Y.) 129 (2005), no. 3, 3835–3842.
  • V. N. Dubinin and D. Karp, Capacities of certain plane condensers and sets under simple geometric transformations, Complex Var. Elliptic Equ. 53 (2008), no. 6, 607–622.
  • G. B. Folland, Real analysis; modern techniques and their applications, 2nd ed., Wiley, New York, 1999.
  • L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969.
  • S. G. Krantz and H. R. Parks, A primer of real analytic functions, 2nd ed., Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Boston, MA, 2002.
  • R. Kühnau, Randeffekte beim elektrostatischen Kondensator [Boundary effects in the electrostatic condenser] (German), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 254 (1998), Anal. Teor. Chisel i Teor. Funkts. 15, 132–144, 246–247; translation in J. Math. Sci. (N. Y.) 105 (2001), no. 4, 2210–2219.
  • N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York, 1972.
  • R. Laugesen, Extremal problems involving logarithmic and Green capacity, Duke Math. J. 70 (1993), no. 2, 445–480.
  • S. Pouliasis, Invariance of Green equilibrium measure on the domain, to appear in Filomat.
  • T. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995.
  • Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), 347–355.