Illinois Journal of Mathematics

The foundational inequalities of D. L. Burkholder and some of their ramifications

Rodrigo Bañuelos

Full-text: Open access

Abstract

This paper presents an overview of some of the applications of the martingale inequalities of D. L. Burkholder to $L^p$-bounds for singular integral operators, concentrating on the Hilbert transform, first and second order Riesz transforms, the Beurling–Ahlfors operator and other multipliers obtained by projections (conditional expectations) of transformations of stochastic integrals. While martingale inequalities can be used to prove the boundedness of a wider class of Calderón–Zygmund singular integrals, the aim of this paper is to show results which give optimal or near optimal bounds in the norms, hence our restriction to the above operators.

Connections of Burkholder’s foundational work on sharp martingale inequalities to other areas of mathematics where either the results themselves or techniques to prove them have become of considerable interest in recent years, are discussed. These include the 1952 conjecture of C. B. Morrey on rank-one convex and quasiconvex functions with connections to problems in the calculus of variations and the 1982 conjecture of T. Iwaniec on the $L^p$-norm of the Beurling–Ahlfors operator with connections to problems in the theory of qasiconformal mappings. Open questions, problems and conjectures are listed throughout the paper and copious references are provided.

Article information

Source
Illinois J. Math., Volume 54, Number 3 (2010), 789-868.

Dates
First available in Project Euclid: 3 May 2012

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1336049979

Digital Object Identifier
doi:10.1215/ijm/1336049979

Mathematical Reviews number (MathSciNet)
MR2928339

Zentralblatt MATH identifier
1259.60047

Subjects
Primary: 60G46: Martingales and classical analysis 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Citation

Bañuelos, Rodrigo. The foundational inequalities of D. L. Burkholder and some of their ramifications. Illinois J. Math. 54 (2010), no. 3, 789--868. doi:10.1215/ijm/1336049979. https://projecteuclid.org/euclid.ijm/1336049979


Export citation

References

  • M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, Graphs, and Mathematical Tables, Dover, New York, 1972.
  • D. Applebaum, Lévy processes and stochastic calculus, Cambridge University Press, Cambridge, 2004.
  • D. Applebaum, Lévy processes–-from probability to finance and quantum groups, Notices of the AMS 51 (2004), 1336–1347.
  • N. Arcozzi, Riesz transforms on compact Lie groups, spheres and Gauss space, Ark. Mat. 36 (1998), 201–231.
  • N. Arcozzi and X. Li, Riesz transforms on spheres, Math. Res. Lett. 4 (1997), 401–412.
  • K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37–60.
  • K. Astala, T. Iwaniec and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, Princeton, 2009.
  • K. Astala, T. Iwaniec, I. Prause and E. Saksman, Burkholder integrals, Morrey's problem and quasiconformal mappings, J. Amer. Math. Soc. 25 (2012), 507–531.
  • J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337–403.
  • R. Bañuelos, Martingale transforms and related singular integrals, Trans. Amer. Math. Soc. 293 (1986), 547–563.
  • R. Bañuelos, A sharp good-$\lambda$ inequality with an application to Riesz transforms, Michigan Math. J. 35 (1988), 117–125.
  • R. Bañuelos and F. Baudoin, Martingale transforms on manifolds, preprint.
  • R. Bañuelos, A. Bielaszewski and K. Bogdan, Fourier multipliers for non-symmetric Lévy processes, preprint.
  • R. Bañuelos and K. Bogdan, Lévy processes and Fourier multipliers, J. Funct. Anal. 250 (2007), 197–213.
  • R. Bañuelos and B. Davis, Donald Burkholder's work in martingales and analysis, Selected Works of Donald L. Burkholder (B. Davis and R. Song, eds.), Springer, New York, 2011.
  • R. Bañuelos and P. Janakiraman, On the weak-type constant of the Beurling–Ahlfors transform, Michigan Math. J. 58 (2009), 459–477.
  • R. Bañuelos and P. Janakiraman, $L^p$-bounds for the Beurling–Ahlfors transform, Trans. Amer. Math. Soc. 360 (2008), 3603–3612.
  • R. Bañuelos and A. J. Lindeman, A martingale study of the Beurling–Ahlfors transform in $\bR^n$, J. Funct. Anal. 145 (1997), 224–265.
  • R. Bañuelos and P. Méndez-Hernández, Space–time Brownian motion and the Beurling–Ahlfors transform, Indiana University Math. J. 52 (2003), 981–990.
  • R. Bañuelos and C. Moore, Probabilistic behavior of harmonic functions. Birkäuser, Basel, 1999.
  • R. Bañuelos and A. Osękowski, Burkholder inequalities for submartingales, Bessel processes and conformal martingales, to appear in Amer. J. Math.
  • R. Bañuelos and A. Osękowski, Martingales and sharp bounds for Fourier multipliers, Annales.
  • R. Bañuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), 575–600.
  • R. Bañuelos and G. Wang, Sharp inequalities for martingales under orthogonality and differential subordination, Illinois Journal of Mathematics 40 (1996), 687–691.
  • R. Bañuelos and G. Wang, Davis's inequality for orthogonal martingales under differential subordination, Michigan Math. J. 47 (2000), 109–124.
  • A. Baernstein II and S. J. Montgomery-Smith, Some conjectures about integral means of $\partial f$ and $\overline\partial f$, Complex Analysis and Differential Equations (Uppsala, Sweden, 1999) (Ch. Kiselman, ed.), Acta Univ. Upsaliensis Univ. C Organ. Hist. 64, Uppsala Univ. Press, Uppsala, Sweden, 1999, pp. 92–109.
  • J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163–168.
  • J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, Probability theory and harmonic analysis (Cleveland, Ohio, 1983), Monogr. Textbooks Pure Appl. Math., vol. 98, Dekker, New York, 1986.
  • A. Borichev, P. Janakiraman and A. Volberg, Subordination by orthogonal martingales in $L^p$ and zeros of Laguerre polynomials, preprint.
  • A. Borichev, P. Janakiraman and A. Volberg, on Burkholder function for orthogonal martingales and zeros of Legendre polynomials, to appear in Amer. J. Math.
  • A. Borichev and A. Volberg, The $L^p$-operator norm of a quadratic perturbation of the real part of the Alhfors–Beurling operator, preprint.
  • D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504.
  • D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997–1011.
  • D. L. Burkholder, A nonlinear partial differential equation and the unconditional constant of the Haar system in $L^p$, Bull. Amer. Math. Soc. 7 (1982), 591–595.
  • D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in Conference on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981) (W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones, eds.), Wadsworth, Belmont, CA, 1983, pp. 270–286.
  • D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647–702.
  • D. L. Burkholder, An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985), 474–478.
  • D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, C.I.M.E. Lectures (Varenna (Como), Italy, 1985), Lecture Notes in Mathematics, vol. 1206, Springer, Berlin, 1986, pp. 61–108.
  • D. L. Burkholder, A sharp and strict $L^p$-inequality for stochastic integrals, Ann. Probab. 15 (1987), 268–273.
  • D. L. Burkholder, A proof of Pelczy'nski's conjecture for the Haar system, Studia Math. 91 (1988), 79–83.
  • D. L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Colloque Paul Lévy (Palaiseau, 1987), Astérisque 157–158 (1988), 75–94.
  • D. L. Burkholder, Differential subordination of harmonic functions and martingales, Harmonic Analysis and Partial Differential Equations (El Escorial, 1987), Lecture Notes in Mathematics, vol. 1384, Springer, Berlin, 1989, pp. 1–23.
  • D. L. Burkholder, On the number of escapes of a martingale and its geometrical significance, Almost Everywhere Convergence (G. A. Edgar and L. Sucheston, eds.), Academic Press, New York, 1989, pp. 159–178.
  • D. L. Burkholder, Explorations in martingale theory and its applications, École d'Eté de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Mathematics, vol. 1464, Springer, Berlin, 1991, pp. 1–66.
  • D. L. Burkholder, Strong differential subordination and stochastic integration, Ann. Probab. 22 (1994), 995–1025.
  • D. L. Burkholder, Sharp norm comparison of martingale maximal functions and stochastic integrals, Proceedings of the Norbert Wiener Centenary Congress (East Lansing, MI, 1994), Proc. Sympos. Appl. Math., vol. 52, Amer. Math. Soc., Providence, RI, 1997, pp. 343–358.
  • D. L. Burkholder, Some extremal problems in martingale theory and harmonic analysis, In Harmonic Analysis and Partial Differential Equations (Chicago, 1996), Chicago Lectures in Math. Univ. Chicago Press, Chicago, 1999, pp. 99–115.
  • D. L. Burkholder, Martingales and singular integrals in Banach spaces, Handbook on the geometry of Banach spaces, Volume 1 (W. B. Johnson and J. Lindenstrauss, eds.), Elsevier, Amsterdam, 2001, 233–269.
  • D. L. Burkholder, The best constant in the Davis inequality for the expectation of the martingale square function, Trans. Amer. Math. Soc. 354 (2002), 91–105.
  • D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249–304.
  • C. Choi, A submartingale inequality, Proc. Amer. Math. Soc. 124 (1996). 2549–2553
  • C. Choi, A weak-type inequality for differentially subordinate harmonic functions, Trans. Amer. Math. Soc. 350 (1998), 2687–2696.
  • K. P. Choi, Some sharp inequalities for martingale transforms, Trans. Amer. Math. Soc. 307 (1988), 279–300.
  • K. P. Choi, A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in $L^p(0,1)$, Trans. Amer. Math. Soc. 330 (1992), 509–529.
  • R. Cont and P. Tankov, Financial modelling with jump processes, Chapman & Hall/CRC, Boca Raton, 2004.
  • B. Dacoronga, Direct methods in the calculus of variations, Springer, Berlin, 1989.
  • B. Davis, On the weak type $(1,1)$ inequality for conjugate functions, Proc. Amer. Math. Soc. 44 (1974), 307–311.
  • B. Davis, On the Lp norms of stochastic integrals and other martingales, Duke Math. J. 43 (1976), 697–704.
  • C. Dellacherie and P.-A. Meyer, Probabilities and potential, B. Theory of martingales, North-Holland Math. Stud., vol. 72, North-Holland, Amsterdam, 1982. Translated from the French by J. P. Wilson.
  • S. Donaldson and D. Sullivan, Quasiconformal 4-manifolds, Acta Math. 163 (1989), 181–252.
  • O. Dragičević, Some remarks on the $L^p$ estimates for powers of the Ahlfors–Beurling operator, Archiv der Mathematik. 97 (2011), 463–471.
  • O. Dragičević, S. Petermichl and A. Volberg, A rotation method which gives linear $L^p$ estimates for powers of the Ahlfors–Beurling operator, J. Math. Pures Appl. 86 (2006), no. 6, 492–509.
  • O. Dragičević and A. Volberg, Bellman functions and dimensionless estimates of Littlewood–Paley type, J. Operator Theory 56 (2006), 167–198.
  • O. Dragičević and A. Volberg, Sharp estimate of the Ahlfors–Beurling operator via averaging martingale transforms, Michigan Math. J. 51 (2003), 415–435.
  • O. Dragičević and A. Volberg, Bellman function, Littlewood–Paley estimates and asymptotics for the Ahlfors–Beurling operator in $L^p(\bC)$, Indiana Univ. Math. J. 54 (2005), no. 4, 971–995.
  • O. Dragičević and A. Volberg, Bellman function for the estimates of Littlewood–Paley type and asymptotic estimates in the $p-1$ problem, C. R. Math. Acad. Sci. Paris 340 (2005), no. 10, 731–734.
  • J. Duoandikoetxea and J. L. Rubio de Francia, Estimations indépendantes de la dimension pour les transformées de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 193–196.
  • R. Durrett, Brownian motion and martingales in analysis, Wadsworth, Belmont, CA, 1984.
  • M. Essén, A superharmonic proof of the M. Riesz conjugate function theorem, Ark. Math. 22 (1984), 281–288.
  • E. Fabes, C. Gutiérrez and R. Scotto, Weak-type estimates for the Riesz transforms associated with the Gaussian measure, Rev. Mat. Iberoamericana 10 (1994), 229–281.
  • T. Figiel, Singular integral operators: A martingale approach, Geometry of Banach spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser., vol. 158, Cambridge Univ. Press, Cambridge, 1990, pp. 95–110.
  • T. Fujita, On some properties of holomorphic diffusion processes, Hitotsubashi Journal of Arts and Sciences 34 (1993), 83–90.
  • M. Fukushima and M. Okada, On conformal martingale diffusions and pluripolar sets, J. Functional Analysis 55 (1984), 377–388.
  • M. Fukushima, On the continuity of plurisubharmonic functions along conformal diffusions, Osaka J. Math. 23 (1986), 69–75.
  • E. Geiss, S. Montgomery-Smith and E. Saksman, On singular integral and martingale transforms, Trans. Amer. Math. Soc. 362 (2010), 553–575.
  • F. W. Gehring and E. Reich, Area distortion under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser A I 388 (1966), 1–15.
  • R. K. Getoor and M. J. Sharpe, Conformal martingales, Invent. Math. 16 (1972), 271–308.
  • L. Grafakos, Classical and modern Fourier analysis, Pearson Education Inc., Upper Saddle River, NJ, 2004.
  • J. T. Gill, on the Beurling Ahlfors transform's weak-type constant, Michigan Math. J. 59 (2010), 353–363.
  • L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, vol. II, Contributions to Probability Theory, Univ. California Press, Berkeley, CA, 1965–66, pp. 31–42.
  • R. F. Gundy, Some topics in probability and analysis. CBMS Regional Conference Series in Mathematics, vol. 70, American Mathematical Society, Providence, RI, 1989.
  • R. F. Gundy, Sur les transformations de Riesz pour le semi-groupe d'Ornstein–Uhlenbeck (French) [Riesz transformation on the Ornstein–Uhlenbeck process], C. R. Acad. Sci. Paris Ser. I Math. 303 (1986), 967–970.
  • R. F. Gundy and M. L. Silverstein, On a probabilistic interpretation for the Riesz transforms, Functional Analysis in Markov Processes, Lect. Notes in Math., vol. 923, Springer, Berlin, 1982, pp. 199–203,
  • R. F. Gundy and N. T. Varopoulos, Les transformations de Riesz et les intégrales stochastiques, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), A13–A16.
  • W. Hammack, Sharp inequalities for the distribution of a stochastic integral in which the integrator is a bounded submartingale, Ann. Probab. 23 (1995), 223–235.
  • W. Hammack, Sharp maximal inequalities for stochastic integrals in which the integrator is a submartingale, Proc. Amer. Math. Soc. 124 (1996), 931–938.
  • C. Gutiérrez, On the Riesz transforms for Gaussian measures, J. Funct. Anal. 120 (1994), 107–134.
  • T. P. Hytönen, On the norm of the Beurling–Ahlfors operator in several dimensions, Canad. Math. Bull. 54 (2011), 113–125.
  • T. P. Hytönen, Vector-valued extension of linear operators, and Tb theorems, Vector measures, integration and related topics, Oper. Theory Adv. Appl., vol. 201, Birkhäuser Verlag, Basel, 2010, pp. 245–254.
  • T. P. Hytönen, Vector-valued singular integrals, and the border between the one-parameter and the multi-parameter theories, CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 42, Austral. Nat. Univ., Canberra, (2007), pp. 11–41.
  • T. P. Hytönen, Littlewood–Paley–Stein theory for semigroups in UMD spaces, Rev. Mat. Iberoam. 23 (2007), 973–1009.
  • T. P. Hytönen, Aspects of probabilistic Littlewood–Paley theory in Banach spaces, Banach spaces and their applications in analysis, Walter de Gruyter, Berlin, 2007, pp. 343–355.
  • T. Iwaniec, Extremal inequalities in Sobolev spaces and quasiconformal mappings, Z. Anal. Anwendungen 1 (1982), 1–16.
  • T. Iwaniec, $L^p$-theory of quasiregular mappings, Quasiconformal Space Mappings (M. Vuorinen, ed.), Lecture Notes in Math., vol. 1508, Springer, Berlin, 1992.
  • T. Iwaniec, Nonlinear Cauchy–Riemann operators in ${\Bbb R}\sp n$, Trans. Amer. Math. Soc. 354 (2002), 1961–1995.
  • T. Iwaniec and G. J. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), 29–81.
  • T. Iwaniec and G. Martin, Riesz transforms and related singular integrals, J. Reine Angew. Math. 473 (1996), 25–57.
  • T. Iwaniec and G. J. Martin, Geometric function theory and nonlinear analysis, Oxford University Press, Oxford, 2001.
  • P. Janakiraman, Orthogonality in complex martingale spaces and connections with the Beurling–Ahlfors transform, preprint.
  • P. Janakiraman, Weak-type estimates for singular integrals and the Riesz transform, Indiana Univ. Math. J. 53 (2004), 533–555.
  • P. Janakiraman, Best weak-type $(p,p)$ constants, $1\leq p\leq2$, for orthogonal harmonic functions and martingales, Illinois J. Math. 48 (2004), 909–921.
  • L. Larsson-Cohn, On the constants in the Meyer inequality, Monatsh. Math. 137 (2002), 51–56.
  • O. Lehto, Remarks on the integrability of the derivatives of quasiconformal mappings, Ann. Acad. Sci. Fenn. Series AI Math. 371 (1965), 8 pp.
  • X.-D. Li, Riesz transforms on forms and $L^p$-Hodge decomposition on complete Riemannian manifolds, Rev. Mat. Iberoam. 26 (2010), 481–528
  • X.-D. Li, On the weak $L^p$-Hodge decomposition and Beurling–Ahlfors transforms on complete Riemannian manifolds, Probab. Theory Related Fields 150 (2011), 111–144.
  • X.-D. Li, Martingale transforms and $L^p$-norm estimates of Riesz transforms on complete Riemannian manifolds, Probab. Theory Related Fields 141 (2008), 247–281.
  • J. Marcinkiewicz, Quelques theoremes sur les series orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84–96.
  • T. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math. Soc. 285 (1984), 739–757.
  • A. D. Melas, The Bellman functions of dyadic-like maximal operators and related inequalities, Adv. Math. 192 (2005), 310–340.
  • A. D. Melas, Dyadic-like maximal operators on LlogL functions, J. Funct. Anal. 257 (2009), 1631–1654.
  • P. A. Meyer, Le dual de $H^1$: Démonstration probabiliste. Séminaire de Probab., XI, Lecture Notes in Math., vol. 581, Springer, Berlin, 1977, pp. 132–195.
  • P. A. Meyer, Retour sur la théorie de Littlewood–Paley, Seminaire de probabilités, XV, Lecture Notes in Math., vol. 850, Springer, Berlin, 1979/80, pp. 151–166.
  • P. A. Meyer, Transformations de Riesz pour les lois gaussiennes, Séminaire de Probab., XVIII, Lect. Notes in Math., vol. 1059, Springer, Berlin, 1984, pp. 179–193.
  • C. B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25–53.
  • C. B. Morrey, Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, vol. 130, Springer-Verlag, New York, 1966.
  • F. L. Nazarov and S. R. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, St. Petersburg Math. J. 8 (1997), 721–824.
  • F. Nazarov, S. Treil and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 4 (1999), 909–928.
  • F. Nazarov, S. Treil and A. Volberg, Bellman function in stochastic optimal control and harmonic analysis (how our Bellman function got its name), Oper. Theory: Adv. Appl. 129 (2001), 393–424.
  • F. Nazarov and A. Volberg, Heat extension of the Beurling operator and estimates for its norm, St. Petersburg Math. J. 15 (2004), 563–573.
  • B. Øksendal and A. Sulem, Applied stochastic control of jump diffusions, Springer, Berling, 2004.
  • A. Osękowski, Sharp inequality for bounded submartingales and their differential subordinates, Electron. Commun. Probab. 13 (2008), 660–675.
  • A. Osękowski, Sharp maximal inequality for stochastic integrals, Proc. Amer. Math. Soc. 136 (2008), 2951–2958.
  • A. Osękowski, Sharp weak-type inequalities for differentially subordinated martingales, Bernoulli 15 (2009), 871–897.
  • A. Osękowski, Sharp norm inequalities for stochastic integrals in which the integrator is a nonnegative supermartingale, Probab. Math. Statist. 29 (2009), no. 1, 29–42.
  • A. Osękowski, On the best constant in the weak type inequality for the square function of a conditionally symmetric martingale, Statist. Probab. Lett. 79 (2009), 1536–1538.
  • A. Osękowski, Weak type inequality for the square function of a nonnegative submartingale, Bull. Pol. Acad. Sci. Math. 57 (2009), 81–89.
  • A. Osękowski, Sharp maximal inequality for martingales and stochastic integrals, Electron. Commun. Probab. 14 (2009), 17–30.
  • A. Osękowski, Sharp inequalities for differentially subordinate harmonic functions and martingales, to appear in Canad. Math. Bull.
  • J. Ubøe, Conformal martingales and analytic functions, Math. Scand. 60 (1987), 292–309.
  • R. E. A. C. Paley, A remarkable series of orthogonal functions I, Proc. London Math. Soc. 34 (1932), 241–264.
  • A. Pełczyński, Norms of classical operators in function spaces, Colloque Laurent Schwartz, Astérisque 131 (1985), 137–162.
  • S. Petermichl, L. Slavin and B. Wick, New estimates for the Beurling–Ahlfors operator on differential forms, J. Operator Theory 65 (2011), 307–324.
  • S. Petermichl and A. Volberg, Heating of the Beurling operator: Weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), 281–305.
  • S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, II. Studia Math. 44 (1972), 165–179.
  • W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161 (1975).
  • G. Pisier, Don Burkholder's work on Banach spaces, Selected Works of Donald L. Burkholder (B. Davis and R. Song, eds.), Springer, New York, 2011.
  • G. Pisier, Riesz transforms: Simpler analytic proof of P.-A. Meyer's inequality, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 485–501.
  • P. E. Protter, Stochastic Integration and Differential Equations, 2nd ed., Stoch. Model. Appl. Probab., vol. 21, Springer-Verlag, Berlin, 2004.
  • K.-I. Sato, Lévy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, 1999.
  • E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
  • E. M. Stein, Topics in harmonic analysis related to the Littlewood–Paley theory, Princeton Univ. Press, Princeton, NJ, 1970.
  • E. M. Stein, Some results in harmonic analysis in $\bR^n$ for $n\rightarrow\infty$, Bull. Amer. Math. Soc. 9 (1983), 71–73.
  • E. M. Stein, Problems in harmonic analysis related to curvature and oscillatory integrals, Proceedings of the International Congress of mathematicians, Berkeley, CA, 1986.
  • J. Suh, A sharp weak type $(p,p)$ inequality $(p>2)$ for martingale transforms and other subordinate martingales, Trans. Amer. Math. Soc. 357 (2005), 1545–1564.
  • V. Šverák, Examples of rank-one convex functions, Proc. Roy. Soc. Edinburgh 114A (1990), 237–242.
  • V. Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120A (1992), 185–189.
  • V. Šverák, New examples of quasiconvex functions, Arch. Rational Mech. Anal. 119 (1992), 293–300.
  • N. Th. Varopoulos, Aspects of probabilistic Littlewood–Paley theory, J. Funct. Anal. 38 (1980), no. 1, 25–60.
  • V. Vasyunin and A. Volberg, Burkholder's function via Monge–Ampère equations, preprint.
  • V. Vasyunin and A. Volberg, The Bellman functions for a certain two weight inequality: The case study, Algebra i Analiz 18 (2006), 24–56.
  • V. Vasyunin and A. Volberg, Bellman functions technique in harmonic analysis, available at sashavolberg.wordpress.com.
  • I. E. Verbitsky, An estimate of the norm of a function in a Hardy space in terms of the norms of its real and imaginary parts, Mat. Issled. 54 (1980), 16–20. (Russian). English transl.: Amer. Math. Soc. Transl. 124 (1984), 11–15.
  • A. Volberg, Bellman approach to some problems in harmonic analysis, Séminaire aux équations dérives partielles, vol. 20, Ecole Polytéchnique, Palaiseau, 2002, pp. 1–14.
  • G. Wang, Sharp inequalities for the conditional square function of a martingale, Ann. Probab. 19 (1991), 1679–1688.
  • G. Wang, Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion, Proc. Amer. Math. Soc. 112 (1991), no. 2, 579–586
  • G. Wang, Sharp square-function inequalities for conditionally symmetric martingales, Trans. Amer. Math. Soc. 328 (1991), 393–419.
  • G. Wang, Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities, Ann. Probab. 23 (1995), 522–551.