Illinois Journal of Mathematics

The regulated primitive integral

Erik Talvila

Full-text: Open access

Abstract

A function on the real line is called regulated if it has a left limit and a right limit at each point. If $f$ is a Schwartz distribution on the real line such that $f=F'$ (distributional or weak derivative) for a regulated function $F$ then the regulated primitive integral of $f$ is $\int_{(a,b)}f=F(b-)-F(a+)$, with similar definitions for other types of intervals. The space of integrable distributions is a Banach space and Banach lattice under the Alexiewicz norm. It contains the spaces of Lebesgue and Henstock–Kurzweil integrable functions as continuous embeddings. It is the completion of the space of signed Radon measures in the Alexiewicz norm. Functions of bounded variation form the dual space and the space of multipliers. The integrable distributions are a module over the functions of bounded variation. Properties such as integration by parts, change of variables, Hölder inequality, Taylor’s theorem and convergence theorems are proved.

Article information

Source
Illinois J. Math., Volume 53, Number 4 (2009), 1187-1219.

Dates
First available in Project Euclid: 22 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1290435346

Digital Object Identifier
doi:10.1215/ijm/1290435346

Mathematical Reviews number (MathSciNet)
MR2741185

Zentralblatt MATH identifier
1207.26018

Subjects
Primary: 26A39: Denjoy and Perron integrals, other special integrals 46G12: Measures and integration on abstract linear spaces [See also 28C20, 46T12]
Secondary: 46E15: Banach spaces of continuous, differentiable or analytic functions 46F05: Topological linear spaces of test functions, distributions and ultradistributions [See also 46E10, 46E35]

Citation

Talvila, Erik. The regulated primitive integral. Illinois J. Math. 53 (2009), no. 4, 1187--1219. doi:10.1215/ijm/1290435346. https://projecteuclid.org/euclid.ijm/1290435346


Export citation

References

  • D. D. Ang, K. Schmitt and L. K. Vy, A multidimensional analogue of the Denjoy–Perron–Henstock–Kurzweil integral, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 355–371.
  • K. K. Aye and P.-Y. Lee, The dual of the space of functions of bounded variation, Math. Bohem. 131 (2006), 1–9.
  • H. Bauer, Measure and integration theory, de Gruyter, Berlin, 2001.
  • B. Bongiorno, L. Di Piazza and D. Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc. (2) 62 (2000), 117–126.
  • V. G. Čelidze and A. G. Džvaršeǐšvili, The theory of the Denjoy integral and some applications, World Scientific, Singapore, 1989 (trans. P. S. Bullen).
  • H. G. Dales et al., Introduction to Banach algebras, operators, and harmonic analysis, Cambridge Univ. Press, Cambridge, 2003.
  • N. Dunford and J. Schwartz, Linear operators, Part I, Interscience, New York, 1957.
  • L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.
  • D. Fraňkova, Regulated functions, Math. Bohem. 116 (1991), 20–59.
  • F. G. Friedlander and M. Joshi, Introduction to the theory of distributions, Cambridge Univ. Press, Cambridge, 1999.
  • T. H. Hildebrandt, On bounded linear functional operations, Trans. Amer. Math. Soc. 36 (1934), 868–875.
  • T. H. Hildebrandt, Linear operations on functions of bounded variation, Bull. Amer. Math. Soc. 44 (1938), 75.
  • T. H. Hildebrandt, Linear continuous functionals on the space $(BV)$ with weak topologies, Proc. Amer. Math. Soc. 17 (1966), 658–664.
  • C. S. Hönig, Volterra Stieltjes-integral equations, North-Holland, Amsterdam, 1975.
  • R. L. Jeffrey, The theory of functions of a real variable, Dover, New York, 1985.
  • H. S. Kaltenborn, Linear functional operations on functions having discontinuities of the first kind, Bull. Amer. Math. Soc. 40 (1934), 702–708.
  • R. Kannan and C. K. Krueger, Advanced analysis on the real line, Springer, New York, 1996.
  • J. J. Koliha, Mean, meaner, and the meanest mean value theorem, Amer. Math. Monthly 116 (2009), 356–361.
  • S. Mac Lane and G. Birkhoff, Algebra, Macmillan, New York, 1979.
  • R. D. Mauldin, Some effects of set-theoretical assumptions in measure theory, Adv. Math. 27 (1978), 45–62.
  • R. M. McLeod, The generalized Riemann integral, The Mathematical Association of America, Washington, 1980.
  • P. Mikusińksi and K. Ostaszewski, Embedding Henstock integrable functions into the space of Schwartz distributions, Real Anal. Exchange 14 (1988-89), 24–29.
  • W. Pfeffer, Derivation and integration, Cambridge Univ. Press, Cambridge, 2001.
  • C. K. Raju, Distributional matter tensors in relativity, Proceedings of the Fifth Marcel Grossmann Meeting on General Relativity, Part A (D. G. Blair and M. J. Buckingham, eds.), World Scientific, Singapore, 1989, pp. 419–422.
  • S. Saks, Theory of the integral, Monografie Matematyczne, Warsaw, 1937 (trans. L. C. Young).
  • Š. Schwabik, On the relation between Young's and Kurzweil's concept of Stieltjes integral, Časopis Pěst. Mat. 98 (1973), 237–251.
  • Š. Schwabik, Linear operators in the space of regulated functions, Math. Bohem. 117 (1992), 79–92.
  • L. Schwartz, Thèorie des distributions, Hermann, Paris, 1966.
  • E. Talvila, Henstock–Kurzweil Fourier transforms, Illinois J. Math. 46 (2002), 1207–1226.
  • E. Talvila, The distributional Denjoy integral, Real Anal. Exchange 33 (2008), 51–82.
  • M. Tvrdý, Regulated functions and the Perron–Stieltjes integral, Časopis Pěst. Mat. 114 (1989), 187–209.
  • M. Tvrdý, Linear bounded functionals on the space of regular regulated functions, Tatra Mt. Math. Publ. 8 (1996), 203–210.
  • M. Tvrdý, Differential and integral equations in the space of regulated functions, Mem. Differential Equations Math. Phys. 25 (2002), 1–104.
  • V. S. Vladimirov, Methods of the theory of generalized functions, Taylor & Francis, London, 2002.
  • W. P. Ziemer, Weakly differentiable functions, Springer, New York, 1989.