Illinois Journal of Mathematics

The extensions of $C^*$-algebras with tracial topological rank no more than one

Xiaochun Fang and Yile Zhao

Full-text: Open access

Abstract

Let $0\rightarrow I\rightarrow A\rightarrow A/I \rightarrow 0$ be a short exact sequence of $C^*$-algebras with $A$ unital. Suppose that $I$ has tracial topological rank no more than one and $A/I$ is TAI (in particular, if $A/I$ is simple and has tracial topological rank no more than one). It will be proved that $A$ has tracial topological rank no more than one if the extension is quasidiagonal, and $A$ has the property ($P_1$) if the extension is tracially quasidiagonal.

Article information

Source
Illinois J. Math., Volume 53, Number 2 (2009), 441-462.

Dates
First available in Project Euclid: 23 February 2010

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1266934787

Digital Object Identifier
doi:10.1215/ijm/1266934787

Mathematical Reviews number (MathSciNet)
MR2594638

Zentralblatt MATH identifier
1188.46031

Subjects
Primary: 46L05: General theory of $C^*$-algebras 46L35: Classifications of $C^*$-algebras

Citation

Fang, Xiaochun; Zhao, Yile. The extensions of $C^*$-algebras with tracial topological rank no more than one. Illinois J. Math. 53 (2009), no. 2, 441--462. doi:10.1215/ijm/1266934787. https://projecteuclid.org/euclid.ijm/1266934787


Export citation

References

  • B. Blackadar, $K$-theory for operator algebras, Springer-Verlag, New York, 1986.
  • L. G. Brown and G. K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.
  • G. A. Elliott, On the classification of inductive limits of sequences of semi-simple finite dimensional algebras, J. Algebra 38 (1976), 29–44.
  • G. A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219.
  • G. A. Elliott, A classification of certain simple $C^*$-algebras, Quantum and Non-Commutative Analysis (Kyoto, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 373–385.
  • G. A. Elliott, A classification of certain simple $C^*$-algebras, II, J. Ramanujan Math. Soc. 12 (1997), 97–134.
  • G. A. Elliott, The classification problem for amenable $C^*$-algebras, Proceedings of ICM 94, Birkhäuser, Basel, 1995, pp. 922–932.
  • G. A. Elliott and G. Gong, On the classification of $C^*$-algebras of real rank zero (II), Ann. Math. 144 (1996), 497–610.
  • G. A. Elliott, G. Gong and L. Li, On the classification of simple inductive limit $C^*$-algebras II: the isomorphism theorem, Invent. Math. 168 (2007), 249–320.
  • X. Fang, Graph $C^*$-algebras and their ideals defined by Cuntz–Krieger family of possibly row-infinite directed graphs, Integral Equations and Operator Theory 54 (2006), 301–316.
  • X. Fang, The real rank zero property of crossed product, Proc. Amer. Math. Soc. 134 (2006), 3015–3024.
  • G. Gong, On the classification of simple inductive limit $C^*$-algebras I: The reduction theorem, Doc. Math. 7 (2002), 255–461.
  • S. Hu, H. Lin and Y. Xue, The tracial topological rank of $C^*$-algebras (II), J. Indiana Univ. 53 (2004), 1577–1603.
  • S. Hu, H. Lin and Y. Xue, The tracial topological rank of extensions of $C^*$-algebras, Math. Scand. 94 (2004), 125–147.
  • E. Kirchberg, The classification of purely infinite $C^*$-algebras using Kasparovs theory, preprint.
  • H. Lin, An introduction to the classification of amenable $C^*$-algebras, World Scientific, River Edge, NJ, 2001.
  • H. Lin, Locally type I simple tracially AF $C^*$-algebras, preprint.
  • H. Lin, Classification of simple TAF $C^*$-algebras, Canad. J. Math. 53 (2001), 161–194.
  • H. Lin, The tracial topological rank of $C^*$-algebras, Proc. London Math. Soc. 83 (2001), 199–234.
  • H. Lin, Classification of simple $C^*$-algebras and higher dimensional non-commutative tori, Ann. of Math. 157 (2003), 521–544.
  • H. Lin, Classification of simple $C^*$-algebras with tracial rank zero, Duke Math. J. 125 (2004), 91–119.
  • H. Lin, Traces and simple $C^*$-algebras with tracial topological rank zero, J. Reine Angew. Math. 568 (2004), 99–137.
  • H. Lin, Simple nuclear $C^*$-algebras of tracial topological rank one, J. Funct. Anal. 251 (2007), 601–679.
  • H. Lin, The Elliott program of classification of finite simple amenable $C^*$-algebras, preprint.
  • S. Liu and X. Fang, Extension algebras of Cuntz algebra, J. Math. Anal. Appl. 329 (2007), 655–663.
  • Q. Lin and N. C. Phillips, $C^*$-algebras of minimal diffeomorphisms, preprint.
  • T. A. Loring, Lifting solutions to perturbing problems in $C^*$-algebras, Fields Institute Monographs, vol. 8, AMS, Providence, RI, 1997.
  • G. K. Pedersen, $C^*$-algebras and their automorphism groups, Academic Press, London, 1979.
  • N. C. Phillips, A classification theorem for nuclear purely infinite simple $C^*$-algebras, Doc. Math. 5 (2000), 49–114.
  • M. Takesaki, Theory of operator algebras I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002, Operator Algebras and Non-commutative Geometry, vol. 5.
  • S. Zhang, $K_1$-groups, quasidiagonality and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325 (1991), 793–818.