Illinois Journal of Mathematics

Locally complete intersection Stanley–Reisner ideals

Naoki Terai and Ken-ichi Yoshida

Full-text: Access by subscription


In this paper, we prove that the Stanley–Reisner ideal of any connected simplicial complex of dimension $\ge2$ that is locally complete intersection is a complete intersection ideal.

As an application, we show that the Stanley–Reisner ideal whose powers are Buchsbaum is a complete intersection ideal.

Article information

Illinois J. Math., Volume 53, Number 2 (2009), 413-429.

First available in Project Euclid: 23 February 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13F55: Stanley-Reisner face rings; simplicial complexes [See also 55U10]
Secondary: 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05]


Terai, Naoki; Yoshida, Ken-ichi. Locally complete intersection Stanley–Reisner ideals. Illinois J. Math. 53 (2009), no. 2, 413--429. doi:10.1215/ijm/1266934785.

Export citation


  • W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Univ. Press, 1993.
  • R. C. Cowsik and M. V. Nori, On the fibers of blowing up, J. Indian Math. Soc. (N.S.) 40 (1976), 217–222.
  • S. Goto and Y. Takayama, Stanley–Reisner ideals whose powers have finite length cohomologies, Proc. Amer. Math. Soc. 135 (2007), 2355–2364.
  • S. Goto and K. Yoshida, Buchsbaum homogeneous algebras with minimal multiplicity, J. Pure Appl. Algebra 210 (2007), 735–749.
  • J. Herzog, Y. Takayama and N. Terai, On the radical of a monomial ideal, Arch. Math. \bf85 (2005), 397–408.
  • R. P. Stanley, Combinatorics and commutative algebra, 2nd ed., Birkhäuser, Boston, 1996.
  • A. Simis, W. V. Vasconcelos and R. H. Villarreal, On the ideal theory of graphs, J. Algebra. 167 (1994), 389–416.
  • J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Springer, Berlin, 1986.
  • Y. Takayama, Combinatorial characterization of generalized Cohen–Macaulay monomial ideals, Bull. Math. Soc. Math. Roumanie (N.S.) 48 (2005), 327–344.
  • N. Terai, Alexander duality in Stanley–Reinser rings, Affine Algebraic Geometry, Osaka Univ. Press, Osaka, 2007, pp. 449–462,