Illinois Journal of Mathematics

On tilting modules over cluster-tilted algebras

David Smith

Full-text: Open access


In this paper, we show that the tilting modules over a cluster-tilted algebra $A$ lift to tilting objects in the associated cluster category $\mathcal{C}_H$. As a first application, we describe the induced exchange relation for tilting $A$-modules arising from the exchange relation for tilting object in $\mathcal{C}_H$. As a second application, we exhibit tilting $A$-modules having cluster-tilted endomorphism algebras.

Article information

Illinois J. Math., Volume 52, Number 4 (2008), 1223-1247.

First available in Project Euclid: 18 November 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 16G20: Representations of quivers and partially ordered sets 18E30: Derived categories, triangulated categories


Smith, David. On tilting modules over cluster-tilted algebras. Illinois J. Math. 52 (2008), no. 4, 1223--1247. doi:10.1215/ijm/1258554359.

Export citation


  • I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras and slices, J. Algebra 319 (2008), 3464–3479.
  • ––––, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), 151–162.
  • I. Assem, J. A. Cappa, M. I. Platzeck and S. Trepode, Some characterisations of supported algebras, J. Pure Appl. Algebra 208 (2007), 1121–1135.
  • I. Assem and F. U. Coelho, Two-sided gluings of tilted algebras, J. Algebra 269 (2003), 456–479.
  • I. Assem, F. U. Coelho and S. Trepode, The left and the right parts of a module category, J. Algebra 281 (2004), 518–534.
  • I. Assem, D. Simson and A. Skowroński, Elements of the representation theory of associative algebras, 1: Techniques of representation theory, London Mathematical Society Student Texts, vol. 65, Cambridge Univ. Press, Cambridge, 2006.
  • M. Auslander and S. O. Smalø, Preprojective modules over artin algebras, J. Algebra 66 (1980), 61–122.
  • A. Buan, O. Iyama, I. Reiten and D. Smith, Mutations of cluster-tilting objects and potentials, preprint, available at arXiv:0804.3813, 2008.
  • A. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572–618.
  • A. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323–332.
  • ––––, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), 143–177.
  • P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from clusters (${A}_n$ case), Trans. Amer. Math. Soc. 358 (2006), 1347–1364.
  • F. U. Coelho, D. Happel and L. Unger, Complements to partial tilting modules, J. Algebra 170 (1994), 184–205.
  • F. U. Coelho and M. Lanzilotta, On non-semiregular components containing paths from injective to projective modules, Comm. Algebra 30 (2002), 4837–4849.
  • S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.
  • C. Fu and P. Liu, Lifting to cluster-tilting objects in 2-Calabi-Yau triangulated categories, Comm. Algebra 37 (2009), 2410–2418.
  • D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge Univ. Press, Cambridge, 1988.
  • ––––, Selforthogonal modules, Abelian groups and modules: Proceedings of the Padova conference (Dordrecht), Math. Appl., vol. 343, Kluwer Academic, Dordrecht, 1995, pp. 257–276.
  • D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasi-tilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88 pp.
  • T. Holm and P. Jørgensen, On the relation between cluster and classical tilting, preprint, available at arXiv:0810.0411, 2008.
  • B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581.
  • ––––, Deformed CY-completions and their duals, to appear (2008).
  • B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), 123–151.
  • S. Koenig and B. Zhu, From triangulated categories to Abelian categories–cluster tilting in a general framework, Math. Z. 258 (2008), 143–160.
  • J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), 436–456.
  • A. Skowroński, On artin algebras with almost all indecomposable modules of projective or injective dimension at most one, Cent. Eur. J. Math. 1 (2003), 108–122.