Illinois Journal of Mathematics

Baer-like decompositions of modules

L. A. Kurdachenko, J. Otal, and I. Ya. Subbotin

Full-text: Access by subscription

Abstract

For certain artinian modules over group rings, we obtain the Baer decomposition, that is, a direct decomposition into two summands such that all chief factors of the first summand are ${\mathcal X}$-central and all chief factors of the second summand are ${\mathcal X}$-eccentric, for some formation $\mathcal X$ of finite groups.

Article information

Source
Illinois J. Math., Volume 47, Number 1-2 (2003), 329-343.

Dates
First available in Project Euclid: 17 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1258488159

Digital Object Identifier
doi:10.1215/ijm/1258488159

Mathematical Reviews number (MathSciNet)
MR2031327

Zentralblatt MATH identifier
1045.20003

Subjects
Primary: 20C12: Integral representations of infinite groups
Secondary: 20C07: Group rings of infinite groups and their modules [See also 16S34] 20D10: Solvable groups, theory of formations, Schunck classes, Fitting classes, $\pi$-length, ranks [See also 20F17] 20F24: FC-groups and their generalizations

Citation

Kurdachenko, L. A.; Otal, J.; Subbotin, I. Ya. Baer-like decompositions of modules. Illinois J. Math. 47 (2003), no. 1-2, 329--343. doi:10.1215/ijm/1258488159. https://projecteuclid.org/euclid.ijm/1258488159


Export citation