Illinois Journal of Mathematics

Some properties of global semianalytic subsets of coherent surfaces

C. Andradas and A. Díaz-Cano

Full-text: Open access

Abstract

Let $X \subset \R^n$ be a coherent analytic surface. We show that the connected components of global analytic subsets of $X$ are global and we compute the stability index and Bröcker's $t$-invariant of $X$. We also state a real Nullstellensatz for normal surfaces.

Article information

Source
Illinois J. Math., Volume 48, Number 2 (2004), 519-537.

Dates
First available in Project Euclid: 13 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1258138396

Digital Object Identifier
doi:10.1215/ijm/1258138396

Mathematical Reviews number (MathSciNet)
MR2085424

Zentralblatt MATH identifier
1077.14087

Subjects
Primary: 14P15: Real analytic and semianalytic sets [See also 32B20, 32C05]
Secondary: 32B20: Semi-analytic sets and subanalytic sets [See also 14P15]

Citation

Andradas, C.; Díaz-Cano, A. Some properties of global semianalytic subsets of coherent surfaces. Illinois J. Math. 48 (2004), no. 2, 519--537. doi:10.1215/ijm/1258138396. https://projecteuclid.org/euclid.ijm/1258138396


Export citation