Illinois Journal of Mathematics

An ergodic and topological approach to disconjugate linear Hamiltonian systems

Russell Johnson, Sylvia Novo, and Rafael Obaya

Full-text: Open access

Abstract

This paper is devoted to the qualitative study of disconjugate random linear Hamiltonian systems. We relate the principal solutions at $\pm\infty$ with the ergodic structure of the flow, the presence of exponential dichotomy, and the description of the Sacker-Sell spectrum. A continuity theorem for the principal solutions is also provided.

Article information

Source
Illinois J. Math., Volume 45, Number 3 (2001), 803-822.

Dates
First available in Project Euclid: 13 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1258138152

Digital Object Identifier
doi:10.1215/ijm/1258138152

Mathematical Reviews number (MathSciNet)
MR1879236

Zentralblatt MATH identifier
1008.37038

Subjects
Primary: 34B20: Weyl theory and its generalizations
Secondary: 34C10: Oscillation theory, zeros, disconjugacy and comparison theory 34D09: Dichotomy, trichotomy 34F05: Equations and systems with randomness [See also 34K50, 60H10, 93E03] 37A99: None of the above, but in this section 37B99: None of the above, but in this section

Citation

Johnson, Russell; Novo, Sylvia; Obaya, Rafael. An ergodic and topological approach to disconjugate linear Hamiltonian systems. Illinois J. Math. 45 (2001), no. 3, 803--822. doi:10.1215/ijm/1258138152. https://projecteuclid.org/euclid.ijm/1258138152


Export citation